to BioTechniques free email alert service to receive content updates.
Cell-free cloning using multiply-primed rolling circle amplification with modified RNA primers
Hirokazu Takahashi1, Kimiko Yamamoto2, Toshio Ohtani1, and Shigeru Sugiyama1
Full Text (PDF)

After the submission of this manuscript, we became aware of a patent describing the use of RNA primers to suppress nonspecific RCA background (37). However, there are two differences between the patent and the present paper. First, the patent has been developed for the detection of single-strand circular probes such as a padlock-probe (11,38); thus, the patent requires RNA primers with long, specific sequences to detect a specific probe. In contrast, the present study used random RNA primers with short sequences to expand the versatility of MPRCA. Second, differences in the length of the RNA primers affect the reaction temperatures used in these two methods. Because accurate annealing of a long, specific RNA primer requires a high temperature, the patented method needs Bst DNA polymerase (large fragment), which works optimally at 65°C. In contrast, random hexamers are unsuitable for reactions at 65°C, and the φ29 DNA polymerase-directed reaction is performed at 30°C. In addition, the fidelity of Bst DNA polymerase is lower than that of φ29 DNA polymerase, because Bst DNA polymerase lacks 3′–5′ exonuclease activity (39). Thus, these differences indicate that combined use of specific RNA primers and Bst DNA polymerase is not suitable for the MPRCA reaction, especially not for cell-free cloning.

In this study, it was demonstrated that cell-free cloning of a ligated, large construct is one of the potential applications of RNA-primed MPRCA. This amplification method can amplify minute quantities of circular DNA: even if only a few copies of ligated circular products are available (due to low ligation efficiency, for example), this method could allow amplification of the desired DNA sequence. Furthermore, provided the number of DNA fragments is the same as the number of kinds of restriction enzyme used, this ligation strategy does not have any limit on the number of DNA fragments that can be used. The amplified DNA product may be suitable to use for the transformation of mammalian cells because the product DNA does not include endotoxins of bacterial origin. Recently, gene-synthesis technology with the elimination of sequence errors—as carried out using oligonucleotides, thermo-stable ligase, plural exonucleases, and endonuclease V—has been reported (40). Although this method may provide great advantages in the chemical synthesis of genes, it has limitations originating from the use of PCR. MPRCA combined with RNA primers may overcome this limitation because the desired product of the method is in a covalently closed circular duplex form.

Circular DNA amplification by MPRCA using RNA primers could greatly improve DNA cloning techniques that are restricted by the limitations of PCR (encountered with highly repetitious or large sequences) or by the host cell being used (encountered with unstable or toxic sequences in host cells) (3,5,6).


The authors thank Jun'ichi Wakayama, Kazumi Tsukamoto, Toshiro Kobori, Yukio Magariyama, and members of the Nanobio-technology group for helpful discussions; and Atsuko Matsumoto, Hiroko Kanahara, and Kanae Tsukada for excellent technical assistance. This work was supported in part by the Bio-Oriented Technology Research Advancement Institution.

The authors declare no competing interests.

Address correspondence to Shigeru Sugiyama, Nano-Biotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan. e-mail: [email protected]

1.) Mager, D.L., and P.S. Henthorn. 1984. Identification of a retrovirus-like repetitive element in human DNA. Proc. Natl. Acad. Sci. USA 81:7510-7514.

2.) Inoue, H., H. Nojima, and H. Okayama. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96:23-28.

3.) Hutchison, C.A., H.O. Smith, C. Pfannkoch, and J.C. Venter. 2005. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. USA 102:17332-17336.

4.) Berr, A., and I. Schubert. 2006. Direct labelling of BAC-DNA by rolling-circle amplification. Plant J. 45:857-862.

5.) Christ, D., K. Famm, and G. Winter. 2006. Tapping diversity lost in transformations—in vitro amplification of ligation reactions. Nucleic Acids Res. 34:e108.

6.) Osborne, R.J., and C.A. Thornton. 2008. Cell-free cloning of highly expanded CTG repeats by amplification of dimerized expanded repeats. Nucleic Acids Res. 36:e24.

7.) Fullwood, M.J., J.J. Tan, P.W. Ng, K.P. Chiu, J. Liu, C.L. Wei, and Y. Ruan. 2008. The use of multiple displacement amplification to amplify complex DNA libraries. Nucleic Acids Res. 36:e32.

8.) Dean, F.B., J.R. Nelson, T.L. Giesler, and R.S. Lasken. 2001. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11:1095-1099.

9.) Blanco, L., A. Bernad, J.M. Lazaro, G. Martin, C. Garmendia, and M. Salas. 1989. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264:8935-8940.

10.) Esteban, J.A., M. Salas, and L. Blanco. 1993. Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem. 268:2719-2726.

11.) Lizardi, P.M., X. Huang, Z. Zhu, P. Bray-Ward, D.C. Thomas, and D.C. Ward. 1998. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19:225-232.

12.) Nelson, J.R., Y.C. Cai, T.L. Giesler, J.W. Farchaus, S.T. Sundaram, M. Ortiz-Rivera, L.P. Hosta, P.L. Hewitt. 2002. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. BioTechniques 32:S44-S47.

13.) Wu, H.C., J. Shieh, D.J. Wright, and A. Azarani. 2003. DNA sequencing using rolling circle amplification and precision glass syringes in a high-throughput liquid handling system. BioTechniques 34:204-207.

14.) Inoue-Nagata, A.K., L.C. Albuquerque, W.B. Rocha, and T. Nagata. 2004. A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. J. Virol. Methods 116:209-211.

15.) Rector, A., R. Tachezy, and M. Van Ranst. 2004. A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J. Virol. 78:4993-4998.

16.) Wang, G., E. Maher, C. Brennan, L. Chin, C. Leo, M. Kaur, P. Zhu, M. Rook. 2004. DNA amplification method tolerant to sample degradation. Genome Res. 14:2357-2366.

17.) Panelli, S., G. Damiani, L. Espen, and V. Sgaramella. 2005. Ligation overcomes terminal underrepresentation in multiple displacement amplification of linear DNA. BioTechniques 39:174-180.

18.) Brukner, I., D. Labuda, and M. Krajinovic. 2006. Phi29-based amplification of small genomes. Anal. Biochem. 354:154-156.

19.) Jakov, M.B., and P.D. Kassner. 2007. Multiple displacement amplification products are compatible with recombination-based cloning. BioTechniques 42:706, 708.

20.) Roohi, J., M. Cammer, C. Montagna, and E. Hatchwell. 2008. An improved method for generating BAC DNA suitable for FISH. Cytogenet. Genome Res. 121:7-9.

21.) Shoaib, M., S. Baconnais, U. Mechold, E. Lecam, M. Lipinski, and V. Ogryzko. 2008. Multiple displacement amplification for complex mixtures of DNA fragments. BMC Genomics 9:415.

22.) Lage, J.M., J.H. Leamon, T. Pejovic, S. Hamann, M. Lacey, D. Dillon, R. Segraves, B. Vossbrinck. 2003. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res. 13:294-307.

23.) Brukner, I., B. Paquin, M. Belouchi, D. Labuda, and M. Krajinovic. 2005. Self-priming arrest by modified random oligonucleotides facilitates the quality control of whole genome amplification. Anal. Biochem. 339:345-347.

24.) Zhang, K., A.C. Martiny, N.B. Reppas, K.W. Barry, J. Malek, S.W. Chisholm, and G.M. Church. 2006. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24:680-686.

25.) Kvist, T., B.K. Ahring, R.S. Lasken, and P. Westermann. 2007. Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl. Microbiol. Biotechnol. 74:926-935.

26.) Holbrook, J.F., D. Stabley, and K. Sol-Church. 2005. Exploring whole genome amplification as a DNA recovery tool for molecular genetic studies. J. Biomol. Tech. 16:125-133.

27.) Yokouchi, H., Y. Fukuoka, D. Mukoyama, R. Calugay, H. Takeyama, and T. Matsunaga. 2006. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Environ. Microbiol. 8:1155-1163.

28.) Jonstrup, S.P., J. Koch, and J. Kjems. 2006. A micro RNA detection system based on padlock probes and rolling circle amplification. RNA 12:1747-1752.

29.) Kornberg, A., and T. Baker. 1992. DNA Replication. W.H. Freeeman and Co., San Francisco, CA.

30.) Burkardt, H.J. 2000. Standardization and quality control of PCR analyses. Clin. Chem. Lab. Med. 38:87-91.

31.) Fire, A., and S.Q. Xu. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92:4641-4645.

32.) Liu, D., S.L. Daubendiek, M.A. Zillman, K. Ryan, and E.T. Kool. 1996. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118:1587-1594.

33.) Bonnin, A., J.M. Lazaro, L. Blanco, and M. Salas. 1999. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. J. Mol. Biol. 290:241-251.

34.) Lagunavicius, A., Z. Kiveryte, V. Zimbaite-Ruskuliene, T. Radzvilavicius, and A. Janulaitis. 2008. Duality of polynucleotide substrates for Phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme. RNA 29:503-513.

35.) Shibata, H., T. Tahira, and K. Hayashi. 1995. RNA-primed PCR. Genome Res. 5:400-403.

36.) Stump, M.D., J.L. Cherry, and R.B. Weiss. 1999. The use of modified primers to eliminate cycle sequencing artifacts. Nucleic Acids Res. 27:4642-4648.

37.) Knott, T., C. Smith, J. Pickering, and T. Schwarz.

38.) Nilsson, M., H. Malmgren, M. Samiotaki, M. Kwiatkowski, B.P. Chowdhary, and U. Landegren. 1994. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085-2088.

39.) Aliotta, J.M., J.J. Pelletier, J.L. Ware, L.S. Moran, J.S. Benner, and H. Kong. 1996. Thermostable Bst DNA polymerase I lacks a 3′→5′ proofreading exonuclease activity. Genet. Anal. 12:185-195.

40.) Bang, D., and G.M. Church. 2008. Gene synthesis by circular assembly amplification. Nat. Methods 5:37-39.

  1    2    3    4    5