to BioTechniques free email alert service to receive content updates.
Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology
Thi-Nguyen-Ny Tran, Gérard Aboudharam, Didier Raoult, and Michel Drancourt
Full Text (PDF)

Provisional recommendations for nonnucleotidic biomolecule analysis in paleomicrobiology

Several pitfalls in protein-based detection of ancient microbes must be addressed through the incorporation of proper controls before and during the analysis of ancient microbial proteins. Sampling mummified tissues for biological investigations prior to radiological investigations to prevent potential degradation of the ancient material and false-negative data has been advocated, but this recommendation lacks definitive evidence (31). False-negative data may result from the suboptimal extraction of proteins in concentrations below that detectable by current techniques. The amount of protein present should be measured prior to determining the identity of the protein, and fluorometric detection is suitable for such a purpose. False-positive data may result from the contamination of ancient material by modern materials. For example, the initial claim of MALDI-TOF MS detection of mycolic acids (69) was further invalidated by the observation that peaks were not mycolic acids; the samples were probably contaminated by the polyethylene glycol component of a mycolic acid standard (70). The possibility of contamination must be addressed by the parallel testing of several experimental blanks consisting of buffer without ancient material. In addition, false-positive results may result from a lack of microbe specificity of the test, as in the case of cross-reactivity of primary antibodies with host tissue or the nonspecific reaction of secondary antibodies with host tissue. For example, what was thought to be the initial detection of hemoglobin in 4500-year-old human bones (71) was later found to be a false result due to cross-reactivity of the primary antibody with nonhemoglobin bone proteins (72). The possibility of cross-reactivity must be addressed by the parallel testing of negative tissue controls, namely, a sample of tissue identical to or similar to the tested host tissues and collected from corpses devoid of any anthropological evidence of infection. In immunodetection, this control ensures that the primary and secondary antibodies lack nonspecific reactivity against the host tissue. Additionally, the tested tissue should be incubated with a primary, nonrelevant antibody to further ensure nonspecific antigenicity of the tested tissues. False-positive data may result from cross-reactivity between microbes and a lack of specificity of the primary antibody. Therefore, testing the primary antibody against a collection of relevant organisms is advocated prior to testing ancient specimens. As for the general experimental design, parallel detection of any other biomolecule using an unrelated technique (e.g., PCR sequencing of aDNA) is warranted. Controlling the reproducibility of the data and blind testing additional specimens in the same batch as negative controls are also warranted.


Even though the detection and characterization of aDNA is the most widely used approach for the study of ancient pathogens (73), the difficulty of obtaining ancient microbial DNA and the critical question of contamination by PCR-amplified DNA may limit this approach in paleomicrobiology. For example, the parallel investigation of Y. pestis aDNA by PCR and F1 antigen by the dipstick assay in the analysis of 17th century skeletal remains indicated that 83% of the samples contained too few aDNA molecules to start PCRs (48). Therefore, studying past infections by the detection of nonnucleotidic biomolecules is an approach that is being increasingly used in paleomicrobiology (Figure 4). As for the immunodetection technique and late serology, these techniques can only answer one question at a time. However, a versatile immunodetection technique referred to as autoimmunohistochemistry has been developed for the diagnosis of modern infectious diseases (43). Since it has been shown that antibodies can survive for centuries, this method can potentially be applied to ancient specimens to demonstrate the presence of microorganisms. The capacity of immunodetection to trace minute quantities of microbial materials can be further increased by the application of immuno-PCR, a technique combining the advantages of immunodetection with the logarithmic, PCR-based amplification of the signal (74). Immuno-PCR was first presented as a technique in which a specific antibody-DNA conjugate is used to detect antigen (74). Accordingly, immuno-PCR has a sensitivity greater than any existing antigen detection system because of the tremendous amplification capability and specificity of PCR (74). We are successfully developing immuno-PCR applications for the detection of Y. pestis in the dental pulp of past plague victims (D. Raoult, unpublished data). With the foreseeable developments of technology, such as MS and immuno-PCR, the analysis of nonnucleotidic biomolecules is becoming a standard approach to complement aDNA analysis in the field of paleomicrobiology.

Competing interests

T.-N.-N. T., D.R., and M.D. own a patent on the MALDI-TOF MS of the dental pulp for classification of mammals. G.A. declares no competing interests.

Address correspondence to Michel Drancourt, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Faculté de Médecine, Université de la Méditerranée, Marseille, France. e-mail: [email protected]

1.) Drancourt, M., and D. Raoult. 2005. Palaeomicrobiology: current issues and perspectives. Nat. Rev. Microbiol. 3:23-35.[CrossRef] [PubMed]

2.) Green, R.E., A.W. Briggs, J. Krause, K. Prufer, H.A. Burbano, M. Siebauer, M. Lachmann, and S. Paabo. 2009. The Neandertal genome and ancient DNA authenticity. EMBO J. 28:2494-2502.[CrossRef] [PubMed]

3.) Hanni, C., T. Brousseau, V. Laudet, and D. Stehelin. 1995. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Res. 23:881-882.[CrossRef] [PubMed]

4.) Paabo, S. 1989. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl. Acad. Sci. USA 86:1939-1943.[CrossRef] [PubMed]

5.) Poinar, H.N., M. Hoss, J.L. Bada, and S. Paabo. 1996. Amino acid racemization and the preservation of ancient DNA. Science 272:864-866.[CrossRef] [PubMed]

6.) Collins, M.J., K.E. Penkman, N. Rohland, B. Shapiro, R.C. Dobberstein, S. Ritz-Timme, and M. Hofreiter. 2009. Is amino acid racemization a useful tool for screening for ancient DNA in bone?. Proc. R. Soc. B 276:2971-2977.[CrossRef] [PubMed]

7.) Bouwman, A.S., and T.A. Brown. 2005. The limits of biomolecular palaeopathology: ancient DNA cannot be used to study venereal syphilis. J. Archaeol. Sci. 32:703-713.[CrossRef]

8.) Barnes, I., and M.G. Thomas. 2006. Evaluating bacterial pathogen DNA preservation in museum osteological collections. Proc. R. Soc. B 273:645-653.[CrossRef] [PubMed]

9.) Spencer, M., and C.J. Howe. 2004. Authenticity of ancient-DNA results: a statistical approach. Am. J. Hum. Genet. 75:240-250.[CrossRef] [PubMed]

10.) Smith, P.R., and M.T. Wilson. 1990. Detection of haemoglobin in human skeletal remains by ELISA. J. Archaeol. Sci. 17:255-268.[CrossRef]

11.) Bada, J.L., X.S. Wang, H.N. Poinar, S. Paabo, and G.O. Poinar. 1994. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim. Cosmochim. Acta 58:3131-3135.[CrossRef] [PubMed]

12.) Heaton, K., C. Solazzo, M.J. Collins, J. Thomas-Oates, and E.T. Bergström. 2009. Towards the application of desortion electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. J. Archaeol. Sci. 36:2145-2154.[CrossRef]

13.) Collins, M.J., P. Westbroek, G. Muyzer, and J.W. de Leeuw. 1992. Experimental-evidence for condensation-reactions between sugars and proteins in carbonate skeletons. Geochim. Cosmochim. Acta 56:1539-1544.[CrossRef]

14.) Willcox, A.W. 2002. Mummies and molecules: molecular biology meets paleopathology. Clin. Microbiol. Newsl. 24:57-60.[CrossRef]

15.) Fornaciari, G., and A. Marchetti. 1986. Intact smallpox virus particles in an Italian mummy of sixteenth century. Lancet 328:625.[CrossRef] [PubMed]

16.) Fornaciari, G., M. Castagna, A. Tognetti, D. Tornaboni, and J. Bruno. 1989. Syphilis in a Renaissance Italian mummy. Lancet 334:614.[CrossRef] [PubMed]

17.) Asara, J.M., J.S. Garavelli, D.A. Slatter, M.H. Schweitzer, L.M. Freimark, M. Phillips, and L.C. Cantley. 2007. Interpreting sequences from mastodon and T. rex. Science 317:1324-1325.[CrossRef] [PubMed]

18.) Asara, J.M., M.H. Schweitzer, L.M. Freimark, M. Phillips, and L.C. Cantley. 2007. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280-285.[CrossRef] [PubMed]

19.) Organ, C.L., M.H. Schweitzer, W. Zheng, L.M. Freimark, L.C. Cantley, and J.M. Asara. 2008. Molecular phylogenetics of mastodon and Tyrannosaurus rex. Science 320:499.[CrossRef] [PubMed]

20.) Muyzer, G., P. Sandberg, M.H.J. Knapen, C. Vermeer, M. Collins, and P. Westbroek. 1992. Preservation of the bone protein osteocalcin in dinosaurs. Geology 20:871-874.[CrossRef]

21.) Collins, M.J., G. Muyzer, P. Westbroek, G.B. Curry, P.A. Sandberg, S.J. Xu, R. Quinn, and D.I. Mackinnon. 1991. Preservation of fossil biopolymeric structures: conclusive immunological evidence. Geochim. Cosmochim. Acta 55:2253-2257.[CrossRef]

22.) Collins, M.J., D. Walton, G.B. Curry, M.S. Riley, T.N. Von Wallmenich, N.M. Savage, P. Muyzer, and P. Westbroek. 2003. Long-term trends in the survival of immunological epitopes entombed in fossil brachiopod skeletons. Org. Geochem. 34:89-96.[CrossRef]

23.) Nielsen-Marsh, C.M., M.P. Richards, P.V. Hauschka, J.E. Thomas-Oates, E. Trinkaus, P.B. Pettitt, I. Karavanic, H. Poinar, and M.J. Collins. 2005. Osteocalcin protein sequences of Neanderthals and modern primates. Proc. Natl. Acad. Sci. USA 102:4409-4413.[CrossRef] [PubMed]

24.) Haensch, S., R. Bianucci, M. Signoli, M. Rajerison, M. Schultz, S. Kacki, M. Vermunt, D.A. Weston. 2010. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog. 6:e1001134.[CrossRef] [PubMed]

25.) Schweitzer, M.H. 2004. Molecular paleontology: some current advances and problems. Ann. Paleontol. 90:81-102.[CrossRef]

26.) Schweitzer, M.H., Z. Suo, R. Avci, J.M. Asara, M.A. Allen, F.T. Arce, and J.R. Horner. 2007. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316:277-280.[CrossRef] [PubMed]

27.) Schweitzer, M.H., W. Zheng, C.L. Organ, R. Avci, Z. Suo, L.M. Freimark, V.S. Lebleu, M.B. Duncan. 2009. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324:626-631.[CrossRef] [PubMed]

28.) Travis, J. 2010. Archaeology. Archaeologists see big promise in going molecular. Science 330:28-29.[CrossRef] [PubMed]

29.) Brandt, E., I. Wiechmann, and G. Grupe. 2002. How reliable are immunological tools for the detection of ancient proteins in fossil bones?. Int. J. Osteoarchaeol. 12:307-316.[CrossRef]

30.) Bruschi, F., M. Masetti, M.T. Locci, R. Ciranni, and G. Fornaciari. 2006. Short report: cysticercosis in an Egyptian mummy of the late Ptolemaic period. Am. J. Trop. Med. Hyg. 74:598-599.[CrossRef] [PubMed]

31.) Bianucci, R., G. Mattutino, R. Lallo, P. Charlier, H. Jouin-Spriet, A. Peluso, T. Higham, C. Torre, and E.R. Massa. 2008. Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period. J. Archaeol. Sci. 35:1880-1885.[CrossRef]

32.) Miller, R.L., S. Ikram, G.J. Armelagos, R. Walker, W.B. Harer, C.J. Shiff, D. Baggett, M. Carrigan, and S.M. Maret. 1994. Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight-F test. Trans. R. Soc. Trop. Med. Hyg. 88:31-32.[CrossRef] [PubMed]

33.) Hollemeyer, K., W. Altmeyer, E. Heinzle, and C. Pitra. 2008. Species identification of Oetzi's clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests. Rapid Commun. Mass Spectrom. 22:2751-2767.[CrossRef] [PubMed]

34.) Bianucci, R., L. Rahalison, A. Peluso, E.R. Massa, E. Ferroglio, M. Signoli, J.-Y. Langlois, and V. Gallien. 2009. Plague immunodetection in remains of religious exhumed from burial sites in central France. J. Archaeol. Sci. 36:616-621.[CrossRef]

35.) Anikovich, M.V., A.A. Sinitsyn, J.F. Hoffecker, V.T. Holliday, V.V. Popov, S.N. Lisitsyn, S.L. Forman, G.M. Levkovskaya. 2007. Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315:223-226.[CrossRef] [PubMed]

36.) Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.[CrossRef] [PubMed]

37.) Bianucci, R., L. Rahalison, E.R. Massa, A. Peluso, E. Ferroglio, and M. Signoli. 2008. Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archaeological and biological approaches (southeastern France, 16th–18th centuries). Am. J. Phys. Anthropol. 136:361-367.[CrossRef] [PubMed]

38.) Fornaciari, G., V. Giuffra, E. Ferroglio, S. Gino, and R. Bianucci. 2010. Plasmodium falciparum immunodetection in bone remains of members of the Renaissance Medici family (Florence, Italy, sixteenth century). Trans. R. Soc. Trop. Med. Hyg. 104:583-587.[CrossRef] [PubMed]

39.) Lepidi, H. 2008.Histologic detection of past pathogens. In D. Raoult, and M. Drancourt (Eds.) Paleomicrobiology: Past Human Infections. Springer-Verlag, Berlin Heidelberg:69-72.[CrossRef]

40.) Miller, R.L., G.J. Armelagos, S. Ikram, N. De Jonge, F.W. Krijger, and A.M. Deelder. 1992. Palaeoepidemiology of Schistosoma infection in mummies. BMJ 304:555-556.[CrossRef] [PubMed]

41.) Dumler, J.S. 1991. Fatal Rocky Mountain spotted fever in Maryland–1901. JAMA 265:718.[CrossRef] [PubMed]

42.) Dumler, J.S., B.L. Baisden, J.H. Yardley, and D. Raoult. 2003. Immunodetection of Tropheryma whipplei in intestinal tissues from Dr. Whipple's 1907 patient. N. Engl. J. Med. 348:1411-1412.[CrossRef] [PubMed]

43.) Lepidi, H., B. Coulibaly, J.P. Casalta, and D. Raoult. 2006. Autoimmunohistochemistry: a new method for the histologic diagnosis of infective endocarditis. J. Infect. Dis. 193:1711-1717.[CrossRef] [PubMed]

44.) Deelder, A.M., R.L. Miller, N. De Jonge, and F.W. Krijger. 1990. Detection of schistosome antigen in mummies. Lancet 335:724-725.[CrossRef] [PubMed]

45.) Buchwalow, I.B., and W. Bocker. 2010. Immunohistochemistry: Basics and Methods. Springer-Verlag, Berlin Heidelberg.[CrossRef] [PubMed]

46.) Cerutti, N., A. Marin, and E. Rabino Massa. 2007.Plague in ancient remains: an immunological approach. In M. Signoli, D. Chevé, P. Adalian, G. Boesch, and O. Dutour (Eds.) Plague: Epidemics and Societies. Firenze University Press, Florence:238-241.[CrossRef] [PubMed]

47.) Vermeer, H.J., G.J. van Dam, K.M. Halkes, J.P. Kamerling, J.F. Vliegenthart, C.H. Hokke, and A.M. Deelder. 2003. Immunodiagnostically applicable monoclonal antibodies to the circulating anodic antigen of Schistosoma mansoni bind to small, defined oligosaccharide epitopes. Parasitol. Res. 90:330-336.[CrossRef] [PubMed]

48.) Pusch, C.M., L. Rahalison, N. Blin, G.J. Nicholson, and A. Czarnetzki. 2004. Yersinial F1 antigen and the cause of Black Death. Lancet Infect. Dis. 4:484-485.[CrossRef] [PubMed]

49.) Fornaciari, G., V. Giuffra, E. Ferroglio, and R. Bianucci. 2010. Malaria was “the killer” of Francesco I de’ Medici (1531–1587). Am. J. Med. 123:568-569.[CrossRef] [PubMed]

50.) Buckley, M., M. Collins, J. Thomas-Oates, and J.C. Wilson. 2009. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23:3843-3854.[CrossRef] [PubMed]

51.) Buckley, M., S.W. Kansa, S. Howard, S. Campbell, J. Thomas-Oates, and M. Collins. 2010. Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J. Archaeol. Sci. 37:13-20.[CrossRef]

52.) Boros-Major, A., A. Bona, G. Lovasz, E. Molnar, A. Marcsik, G. Palfi, and L. Mark. 2010. New perspectives in biomolecular paleopathology of ancient tuberculosis: a proteomic approach. J. Archaeol. Sci. 38:197-201.[CrossRef]

53.) Tran, T.N.N., G. Aboudharam, A. Gardeisen, B. Davoust, J.P. Bocquet-Appel, C. Flaudrops, M. Belghazi, D. Raoult, and M. Drancourt. 2011. Classification of ancient mammal individuals using dental pulp MALDI-TOF MS peptide profiling. PLoS One 6:e17319.[CrossRef] [PubMed]

54.) Blow, M.J., T. Zhang, T. Woyke, C.F. Speller, A. Krivoshapkin, D.Y. Yang, A. Derevianko, and E.M. Rubin. 2008. Identification of ancient remains through genomic sequencing. Genome Res. 18:1347-1353.[CrossRef] [PubMed]

55.) Gilbert, M.T., D.I. Drautz, A.M. Lesk, S.Y. Ho, J. Qi, A. Ratan, C.H. Hsu, A. Sher. 2008. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc. Natl. Acad. Sci. USA 105:8327-8332.[CrossRef] [PubMed]

56.) Higuchi, R., B. Bowman, M. Freiberger, O.A. Ryder, and A.C. Wilson. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282-284.[CrossRef] [PubMed]

57.) Krause, J., L. Orlando, D. Serre, B. Viola, K. Prufer, M.P. Richards, J.J. Hublin, C. Hanni. 2007. Neanderthals in central Asia and Siberia. Nature 449:902-904.[CrossRef] [PubMed]

58.) Kempson, I.M., W.M. Skinner, P.K. Kirkbride, A.J. Nelson, and R.R. Martin. 2003. Time-of-flight secondary ion mass spectrometry analysis of hair from archaeological remains. Eur. J. Mass Spectrom. (Chichester Eng.) 9:589-597.[CrossRef]

59.) Torres, J.M., C. Borja, and E.G. Olivares. 2002. Immunoglobulin G in 1.6 million-year-old fossil bones from Venta Micena (Granada, Spain). J. Archaeol. Sci. 29:167-175.[CrossRef]

60.) Kolman, C.J., A. Centurion-Lara, S.A. Lukehart, D.W. Owsley, and N. Tuross. 1999. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J. Infect. Dis. 180:2060-2063.[CrossRef] [PubMed]

61.) Donoghue, H.D., M. Spigelman, J. Zias, A.M. Gernaey-Child, and D.E. Minnikin. 1998. Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Lett. Appl. Microbiol. 27:265-269.[CrossRef] [PubMed]

62.) Donoghue, H.D. 2008.Palaeomicrobiology of tuberculosis. In D. Raoult, and M. Drancourt (Eds.) Paleomicrobiology: Past Human Infections. Springer-Verlag, Heidelberg:75-97.[CrossRef] [PubMed]

63.) Donoghue, H.D., O.Y. Lee, D.E. Minnikin, G.S. Besra, J.H. Taylor, and M. Spigelman. 2010. Tuberculosis in Dr. Granville's mummy: a molecular re-examination of the earliest known Egyptian mummy to be scientifically examined and given a medical diagnosis. Proc. R. Soc. B 277:51-56.[CrossRef] [PubMed]

64.) Gernaey, A.M., D.E. Minnikin, M.S. Copley, R.A. Dixon, J.C. Middleton, and C.A. Roberts. 2001. Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis. Tuberculosis (Edinb.) 81:259-265.[CrossRef] [PubMed]

65.) Kremer, L., A.R. Baulard, and G.S. Besra. 2000.Genetics of mycolic acid biosynthesis. In G.F. Hatfull, and W.R. Jacobs (Eds.) Molecular Genetics of Mycobacteria. ASM Press, Washington, DC:173-186.[CrossRef] [PubMed]

66.) Redman, J.E., M.J. Shaw, A.I. Mallet, A.L. Santos, C.A. Roberts, A.M. Gernaey, and D.E. Minnikin. 2009. Mycocerosic acid biomarkers for the diagnosis of tuberculosis in the Coimbra Skeletal Collection. Tuberculosis (Edinb.) 89:267-277.[CrossRef] [PubMed]

67.) Donoghue, H.D., I. Hershkovitz, D.E. Minnikin, G.S. Besra, O.Y.-C. Lee, E. Galili, C.L. Greenblatt, E. Lemma. 2009. Biomolecular archaeology of ancient tuberculosis: response to “Deficiencies and challenges in the study of ancient tuberculosis DNA” by Wilbur et al. (2009). J. Archaeol. Sci. 36:2797-2804.[CrossRef]

68.) Hershkovitz, I., H.D. Donoghue, D.E. Minnikin, G.S. Besra, O.Y. Lee, A.M. Gernaey, E. Galili, V. Eshed. 2008. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One 3:e3426.[CrossRef] [PubMed]

69.) Mark, L., Z. Patonai, A. Vaczy, T. Lorand, and A. Marcsik. 2010. High-throughput mass spectrometric analysis of 1400-year-old mycolic acids as biomarkers for ancient tuberculosis infection. J. Archaeol. Sci. 37:302-305.[CrossRef]

70.) Minnikin, D.E., O.Y.-C. Lee, M. Pitts, M.S. Baird, and G.S. Besra. 2010. Essentials in the use of mycolic acid biomarkers for tuberculosis detection: response to “High-throughput mass spectrometric analysis of 1400-year-old mycolic acids as biomarkers for ancient tuberculosis infection” by Mark et al., 2010. J. Archaeol. Sci. 37:2407-2412.[CrossRef]

71.) Ascenzi, A., M. Brunori, G. Citro, and R. Zito. 1985. Immunological detection of hemoglobin in bones of ancient Roman times and of Iron and Eneolithic Ages. Proc. Natl. Acad. Sci. USA 82:7170-7172.[CrossRef] [PubMed]

72.) Lendaro, E., R. Ippoliti, A. Bellelli, M. Brunori, R. Zito, G. Citro, and A. Ascenzi. 1991. Brief communication: on the problem of immunological detection of antigens in skeletal remains. Am. J. Phys. Anthropol. 86:429-432.[CrossRef] [PubMed]

73.) Drancourt, M., and D. Raoult. 2008.Molecular detection of past pathogens. In D. Raoult, and M. Drancourt (Eds.) Paleomicrobiology: Past Human Infections. Springer-Verlag, Heidelberg:55-68.[CrossRef] [PubMed]

74.) Sano, T., C.L. Smith, and C.R. Cantor. 1992. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120-122.[CrossRef] [PubMed]

  1    2    3    4    5