to BioTechniques free email alert service to receive content updates.
Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives
Yutaka Kodama1 and Chang-Deng Hu2
Full Text (PDF)

One challenge facing BiFC users is the difficulty in identifying appropriate negative controls (Figure 4, B and C). This is often the case when the two proteins are new and no prior biochemical or structural information is available. To overcome this challenge, BiFC competition analysis should be considered as an alternative approach (Figure 5). The methodology behind BiFC competition analysis was originally reported using purified bJun-YN155 and bFos-YC155 fusion proteins (8). When differing amounts of free bJun were added to the assay, fluorescence complementation was inhibited in a dose-dependent manner (8) (Figure 5). The competitive nature of bJun interactions was also demonstrated using the multicolor BiFC assay to analyze interactions among bJun, bFos, and bATF2 (15). BiFC competition analysis has been successfully used in other BiFC experiments as well (17, 19, 62). However, it is important to note that the competitor must be co-expressed with the two fusion proteins, if not before the expression of the two fusions, since the BiFC complex is essentially irreversible once formed (8, 33, 43, 48-51). As demonstrated in the same bJun-YN155/bFos-YC155 system, addition of bJun at later times failed to efficiently inhibit fluorescence complementation (8).

In summary, we strongly recommend the use of a mutant control where a single mutation or small deletion is introduced into the interaction interface in one of the two interacting proteins. If such a mutant control is not available, one should at least perform BiFC competition analysis. In either case, quantification of the BiFC signal is desired unless all-or-none results are obtained.

Here we have summarized the recent development of BiFC technology and provided a perspective on future developments. Since the first use of BiFC for visualization of PPIs in mammalian cells a decade ago, various BiFC systems and applications have been reported for use in a wide range of cells and model organisms. Continued development of new BiFC systems will likely further expand and enhance applications to biological research.


The authors thank Holli Duren for technical assistant regarding BiFC experiments in C. elegans. The authors also thank Toyobo Biotechnology Foundation (long-term research grants) for support of collaboration between Y.K. and C.D.H.

Competing interests

The authors declare no competing interests.

Address correspondence to Yutaka Kodama, Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan. Email: [email protected]">[email protected] or Chang-Deng Hu, Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA. Email: [email protected]">[email protected]

1.) Venkatesan, K., J.F. Rual, A. Vazquez, U. Stelzl, I. Lemmens, T. Hirozane-Kishikawa, T. Hao, M. Zenkner. 2009. An empirical framework for binary interactome mapping. Nat. Methods 6:83-90.

2.) Simonis, N., J.F. Rual, A.R. Carvunis, M. Tasan, I. Lemmens, T. Hirozane-Kishikawa, T. Hao, J.M. Sahalie. 2009. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat. Methods 6:47-54.

3.) Yu, H., P. Braun, M.A. Yildirim, I. Lemmens, K. Venkatesan, J. Sahalie, T. Hirozane-Kishikawa, F. Gebreab. 2008. High-quality binary protein interaction map of the yeast interactome network. Science 322:104-110.

4.) Arabidopsis Interactome Mapping Consortium 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333:601-607.

5.) Yang, F., L.G. Moss, and G.N. Phillips. 1996. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14:1246-1251.

6.) Tsien, R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509-544.

7.) Ghosh, I., A.D. Hamilton, and L. Regan. 2000. Antiparallel leucine zipper-directed protein reassembly: applications to the green fluorescent protein. J. Am. Chem. Soc. 122:5658-5659.

8.) Hu, C.-D., Y. Chinenov, and T.K. Kerppola. 2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9:789-798.

9.) Kerppola, T.K. 2008. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys. 37:465-487.

10.) Shyu, Y.J., and C.-D. Hu. 2008. Fluorescence complementation: an emerging tool for biological research. Trends Biotechnol. 26:622-630.

11.) Heim, R., D.C. Prasher, and R.Y. Tsien. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91:12501-12504.

12.) Shaner, N.C., R.E. Campbell, P.A. Steinbach, B.N. Giepmans, A.E. Palmer, and R.Y. Tsien. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:1567-1572.

13.) Chudakov, D.M., M.V. Matz, S. Lukyanov, and K.A. Lukyanov. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90:1103-1163.

14.) Stepanenko, O.V., O.V. Stepanenko, D.M. Shcherbakova, I.M. Kuznetsova, K.K. Turoverov, and V.V. Verkhusha. 2011. Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques 51:313-314.

15.) Hu, C.-D., and T.K. Kerppola. 2003. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21:539-545.

16.) Grinberg, A.V., C.-D. Hu, and T.K. Kerppola. 2004. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cell. Biol. 24:4294-4308.

17.) Hynes, T.R., E. Yost, S. Mervine, and C.H. Berlot. 2008. Multicolor BiFC analysis of competition among G protein beta and gamma subunit interactions. Methods 45:207-213.

18.) Waadt, R., L.K. Schmidt, M. Lohse, K. Hashimoto, R. Bock, and J. Kudla. 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J. 56:505-516.

19.) Vidi, P.A., B.R. Chemel, C.-D. Hu, and V.J. Watts. 2008. Ligand-dependent oligomerization of dopamine D(2) and adenosine A(2A) receptors in living neuronal cells. Mol. Pharmacol. 74:544-551.

20.) Kodama, Y., and M. Wada. 2009. Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. Plant Mol. Biol. 70:211-217.

21.) Shyu, Y.J., H. Liu, X. Deng, and C.-D. Hu. 2006. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40:61-66.

22.) Sarkar, M., and T.J. Magliery. 2008. Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients. Mol. Biosyst. 4:599-605.

23.) Zhou, J., J. Lin, C. Zhou, X. Deng, and B. Xia. 2011. An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Acta Biochim. Biophys. Sin. (Shanghai) 43:239-244.

24.) Kodama, Y. 2011. A bright green-colored bimolecular fluorescence complementation assay in living plant cells. Plant Biotechnol. 28:95-98.

25.) Heim, R., A.B. Cubitt, and R.Y. Tsien. 1995. Improved green fluorescence. Nature 373:663-664.

26.) Crameri, A., E.A. Whitehorn, E. Tate, and W.P. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14:315-319.

27.) Heikal, A.A., S.T. Hess, G.S. Baird, R.Y. Tsien, and W.W. Webb. 2000. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (DsRed) and yellow (Citrine). Proc. Natl. Acad. Sci. USA 97:11996-12001.

28.) Nagai, T., K. Ibata, E.S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20:87-90.

29.) Rizzo, M.A., G.H. Springer, B. Granada, and D.W. Piston. 2004. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22:445-449.

30.) Pédelacq, J.D., S. Cabantous, T. Tran, T.C. Terwilliger, and G.S. Waldo. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24:79-88.

31.) Jach, G., M. Pesch, K. Richter, S. Frings, and J.F. Uhrig. 2006. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat. Methods 3:597-600.

32.) Fan, J.Y., Z.Q. Cui, H.P. Wei, Z.P. Zhang, Y.F. Zhou, Y.P. Wang, and X.E. Zhang. 2008. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem. Biophys. Res. Commun. 367:47-53.

33.) Chu, J., Z. Zhang, Y. Zheng, J. Yang, L. Qin, J. Lu, Z.L. Huang, S. Zeng, and Q. Luo. 2009. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens. Bioelectron. 25:234-239.

34.) Lee, Y.R., J.H. Park, S.H. Hahm, L.W. Kang, J.H. Chung, K.H. Nam, K.Y. Hwang, I.C. Kwon, and Y.S. Han. 2010. Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells. Mol. Imaging Biol. 12:468-478.

35.) Ando, R., H. Mizuno, and A. Miyawaki. 2004. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370-1373.

36.) Patterson, G.H., and J. Lippincott-Schwartz. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873-1877.

37.) Wiedenmann, J., S. Ivanchenko, F. Oswald, F. Schmitt, C. Röcker, A. Salih, K.D. Spindler, and G.U. Nienhaus. 2004. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101:15905-15910.

38.) Ando, R., H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki. 2002. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99:12651-12656.

39.) Yu, Y., and S. Lutz. 2011. Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. 29:18-25.

40.) Baird, G.S., D.A. Zacharias, and R.Y. Tsien. 1999. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96:11241-11246.

41.) Ohashi, K., T. Kiuchi, K. Shoji, K. Sampei, and K. Mizuno. 2012. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques 52:45-50.

42.) Lin, J., N. Wang, Y. Li, Z. Liu, S. Tian, L. Zhao, Y. Zheng, S. Liu. 2011. LEC-BiFC: a new method for rapid assay of protein interaction. Biotech. Histochem. 86:272-279.

43.) Kodama, Y., and C.-D. Hu. 2010. An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques 49:793-805.

44.) Nakagawa, C., K. Inahata, S. Nishimura, and K. Sugimoto. 2011. Improvement of a Venus-based bimolecular fluorescence complementation assay to visualize bFos-bJun interaction in living cells. Biosci. Biotechnol. Biochem. 75:1399-1401.

45.) Chittenden, T., C. Flemington, A.B. Houghton, R.G. Ebb, G.J. Gallo, B. Elangovan, G. Chinnadurai, and R.J. Lutz. 1995. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14:5589-5596.

46.) Hiatt, S.M., Y.J. Shyu, H.M. Duren, and C.-D. Hu. 2008. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans. Methods 45:185-191.

47.) Saka, Y., A.I. Hagemann, and J.C. Smith. 2008. Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus. Methods 45:192-195.

48.) Morell, M., A. Espargaró, F.X. Avilés, and S. Ventura. 2007. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics 7:1023-1036.

49.) Remy, I., and S.W. Michnick. 2004. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods 32:381-388.

50.) Ding, Z., J. Liang, Y. Lu, Q. Yu, Z. Songyang, S.Y. Lin, and G.B. Mills. 2006. A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc. Natl. Acad. Sci. USA 103:15014-15019.

51.) Robida, A.M., and T.K. Kerppola. 2009. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association. J. Mol. Biol. 394:391-409.

52.) Schmidt, C., B. Peng, Z. Li, G.M. Sclabas, S. Fujioka, J. Niu, M. Schmidt-Supprian, D.B. Evans. 2003. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol. Cell 12:1287-1300.

53.) Guo, Y., M. Rebecchi, and S. Scarlata. 2005. Phospholipase Cbeta2 binds to and inhibits phospholipase Cdelta1. J. Biol. Chem. 280:1438-1447.

54.) Anderie, I., and A. Schmidt. 2007. In vivo visualization of actin dynamics and actin interactions by BiFC. Cell Biol. Int. 31:1131-1135.

55.) Hu, C.-D., and T.K. Kerppola. 2005.Direct visualization of protein interactions in living cells using bimolecular fluorescence complementation analysis. In P. Adams, and E. Golemis (Eds.) Protein-Protein Interactions. Laboratory Press, Cold Spring Harbor.

56.) Hu, C.-D., A. Grinberg, and T. Kerppola. 2006. Visualization of protein interaction in living cells using bimolecular fluorescence complementation (BiFC) analysis. Curr. Protoc. Cell Biol. 29:21.3.1-21.3.21.

57.) Kerppola, T.K. 2006. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1:1278-1286.

58.) Shyu, Y.J., S.M. Fox, H.M. Duren, R.E. Ellis, T.K. Kerppola, and C.-D. Hu. 2008. Visualization of protein interaction in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat. Protoc. 4:588-596.

59.) Shyu, Y.J., C.D. Suarez, and C.-D. Hu. 2008. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat. Protoc. 3:1693-1702.

60.) Waadt, R., and J. Kudla. 2008. In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). Cold Spring Harb. Protoc pdb.prot4995.

61.) Vidi, P.A., J.A. Przybyla, C.-D. Hu, and V.J. Watts. 2010. Visualization of G protein-coupled receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC). Curr. Protoc. Neurosci. Unit 5.29 Chapter 5.

62.) Hudry, B., S. Viala, Y. Graba, and S. Merabet. 2011. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol. 9:5.

  1    2    3    4    5