Improved LM-PCR Procedure for In Vivo Footprinting Analysis of GC-Rich Promoters

Biotechniques 26:840-843 (May 1999)

The mechanisms that lead to transcriptional control of promoters by DNA-binding proteins are usually determined by in vitro techniques such as electrophoretic mobility shift analysis (EMSAs), in vitro footprinting and mutational analyses of reporter constructs. However, in many cases, these analyses do not accurately reproduce the true in vivo situation of endogenous promoters in the context of the cellular chromatin structure.

In vivo footprinting analysis of genomic DNA has been developed to address this issue. This type of analysis visualizes, at single-nucleotide resolution, DNA-protein contacts occurring in living cells, thus providing critical information on the presence of transcription factors on endogenous promoters. Currently, several protocols are available to perform this analysis (for examples, see References 1,3,5–7,9). All of them involve two steps: (i) in situ modifications of genomic DNA performed on cell cultures, tissues, whole embryos etc. with chemical, enzymatic or physical agents (e.g., methylation agents, DNase I or UV irradiation, respectively) whose action on DNA is disturbed by the presence of DNA-bound proteins; and (ii) visualization of the DNA residues protected by proteins within a single-copy gene of interest. So far, the most sensitive technique used for step 2 involves a combination of ligation-mediated polymerase chain reaction (LM-PCR) amplification and genomic sequencing procedures that are performed with sets of primers specific for the studied gene (3,5,6). However, the success of this long and difficult technique is highly dependent on the GC-composition of the gene under study. Indeed, GC-rich, single-copy sequences are difficult to amplify by conventional PCR techniques, possibly due to rapid renaturation of the template and very stable secondary structures which cause elongation blocks during amplification by DNA polymerase. We repeatedly faced this problem during the study of cell cycle-regulated genes, which have promoters that are often highly GC-rich. To resolve this issue, we modified several steps of conventional in vivo footprinting protocols (1,3,5–7,9). Notably, we introduced dimethyl sulfoxide (DMSO) all along the procedure since this compound had been previously shown to improve PCR amplification of GC-rich DNA sequences by decreasing the rapid renaturation of GC-rich templates (8,10). Moreover, to reduce the duration of an experiment that usually requires two to three days with conventional protocols, we also used a quick-ligation step (4) and a RoboCycler® Gradient Temperature Cycler (Stratagene, La Jolla, CA, USA) allowing us to optimize and perform a complete experiment in 1.5 days.

To assess the efficiency of this protocol for analyzing GC-rich sequences, we used it to visualize in vivo DNA-protein contacts on the promoter of the human cyclin E gene (2) in exponentially growing MCF7 breast cells and in human IMR 90 fibroblasts. The investigated sequence is located -384/-175 nucleotides (nt) relative to the transcription initiation site, is 83% GC-rich (Figure 1A) and is “resistant” to analysis by standard genomic footprinting procedures (e.g., Figure 1B, lanes 1 and 2).

Living cells and control naked genomic DNA were treated with the guanosine methylating agent dimethyl sulfate (DMS; Sigma, St. Louis, MO, USA) (3.5). 2 × 10⁶ cells per 14-cm-diameter dish were treated with DMS at 0.2% for 5 min at room temperature in their cell culture medium (Dulbecco's modified Eagle medium [DMEM]/fetal calf serum [FCS]) buffered with HEPES (20 mM final), pH 7.4. After DMS treatment, cells were washed 3× with cold PBS/2% β-mercaptoethanol and then collected in 1 mL of lysis buffer (50 mM Tris-HCl, pH 8.0, 20 mM EDTA, 1% sodium dodecyl sulfate [SDS], 2% β-mercaptoethanol). Genomic DNA was isolated by three gentle extractions with phenol (pH 8.0) followed by two precipitations in 4 M ammonium acetate with 3 vol of absolute ethanol (with 70% EtOH washes). DNA was then redissolved in 1 mL of water. As a reference, genomic DNA

REFERENCES

6. Huyghe, B.G., X. Liu, S. Sutjipto, B.J. Sugerman, M.T. Horn, H.M. Shepard, C.J. Scandella and P. Shabram. 1993. A method for in vivo footprinting analysis of genomic DNA performed on cell cultures, tissues, whole embryos etc. with chemical, enzymatic or physical agents (e.g., methylating agents, DNase I or UV irradiation, respectively) whose action on DNA is disturbed by the presence of DNA-bound proteins. Hum. Gene Ther. 6:1403-1416.

cles 14:810-817.

I thank Blake Pepinsky for helpful advice on the column chromatography, Frederick Boyce for discussions and review of the manuscript and Campbell Kaynor for technical assistance. Address correspondence to Dr. James Barsoum, Biogen, Inc., 12 Cambridge Center, Cambridge, MA 02142, USA. Internet: jim_barsoum@biogen.com

Received 22 September 1998; accepted 2 February 1999.

James Barsoum

Biogen

Cambridge, MA, USA
isolated from non-treated cells (1 mg/mL in water) was methylated in vitro with 0.5% DMS for 4 min at room temperature. Piperidine cleavage at methylated bases was performed in 1 N piperidine at 95°C for 30 min. Chemically cleaved samples were precipitated in ethanol, evaporated 2× and finally re-suspended to 0.4 mg/mL in water. Samples were analyzed on agarose gels to monitor their cleavage (smears should be below 500 bp). Two micrograms of these samples were used for LM-PCR.

These modified DNAs were then used for both LM-PCR and genomic sequencing that was performed in either the presence or absence of DMSO. PCR primers ASCE7 (5′-GGACAGGCGGCTGCGCG-3′), ASCE8 (5′-GCCAAGTGACAGGGCCTGCGCG-3′) and ASCE9 (5′-AAGTGACAGGCGCTGCGCGCAAGTGACAGGGC-3′) were designed to analyze the human cyclin E promoter (Figure 1A). Given
the high GC content of the sequence, the melting temperatures (T_ms) of ASCE 7, 8 and 9 is very high, i.e., 70°, 69° and 72°C, respectively. All reactions were performed with a Robocycler Gradient 96 Temperature Cycler.

A 2 µg amount of piperidine-cleaved genomic DNA and 0.3 pmol of the ASCE 7 oligonucleotide in 25 µL of first-strand buffer (10 mM Tris-HCl, pH 8.9, 5 mM MgSO$_4$, 40 mM NaCl, 20 µg/mL bovine serum albumin [BSA] and 10% DMSO) were denatured at 95°C for 5 min and then annealed for 30 min at various temperatures to determine the optimum temperature of annealing of the elongation step ($T_{\text{an/el}}$). Five $T_{\text{an/el}}$ temperatures are usually screened simultaneously with the Robocycler and are determined as follows: (i) T_m of ASCE 7, (ii) T_m - 6°C, (iii) T_m - 3°C, (iv) T_m + 3°C and (v) T_m + 6°C. Freshly prepared dNTPs (up to a 0.25 mM final concentration) and 0.5 U of Vent® exo- DNA Polymerase (New England Biolabs, Beverly, MA, USA) were then added to the annealed DNA/primer mixture, and elongation was carried out for 15 min at 76°C. A 45-µL vol of ligation mixture (30 mM Tris-HCl, pH 7.5, 25 mM MgCl$_2$, 20 mM dithiothreitol [DTT], 1 mM ATP, pH 7.0, 50 µg/mL BSA, 10% polyethylene glycol [PEG] 6000), 4 U of T4 DNA ligase (Boehringer Mannheim GmbH, Mannheim, Germany) and 25 pmol of annealed linkers LINK1/LINK2 (plus strand LINK1-5’-GAATTCAGATC-3’, minus strand LINK2-5’-GCGGTGACCCGAGAGATCTGAATTC-3’ as previously described; Reference 3) were then added to the elongation reaction mixture. This asymmetric LINK1/LINK2-annealed linker was used to promote a unidirectional ligation using a quick ligation procedure (4). After a 1-h incubation at 17°C, ligated DNA was then precipitated with cold absolute ethanol, washed with 70% ethanol and resuspended in 100 µL of amplification buffer (65 mM Tris-HCl, pH 8.8, 40 mM NaCl, 10 mM β-mercaptoethanol, 3 mM MgCl$_2$, 10% DMSO, 0.4 mM dNTPs). PCR amplification was next performed upon addition of 10 pmol of ASCE 8 primer and 1 U of Taq DNA Polymerase (PerkinElmer International, Rotkreuz, Switzerland). PCR conditions were as follows: 4 min at 95°C followed by 30 cycles of 1 min at 95°C, 2 min at temperature of annealing of the amplification step ($T_{\text{an/amp}}$), 2 min at 76°C and 7 min at 76°C ($T_{\text{an/amp}}$ as described for $T_{\text{an/el}}$ we simultaneously screened five temperatures around the T_m of ASCE 8). A 15-µL aliquot of this amplification reaction was then mixed with 5 µL of a labeling buffer (65 mM Tris-HCl, pH 8.8, 40 mM NaCl, 10 mM β-mercaptoethanol, 2 mM MgCl$_2$, 3.75 mM dNTPs, 10% DMSO, 0.5 U of Vent exo- DNA poly-
merase containing 0.15 pmol of 32P-end-labeled ASCE9 primer (3 × 10^6 cpm/pmol). PCR/labeling conditions follow: 4 min at 95°C followed by nine cycles: 1 min at 95°C, 2 min at temperature of annealing of the labeling step (T_an/el) and 2 min at 76°C (T_an/lab). As for T_an/el and T_an/amp, five temperatures around the T_m of ASCE9 were tested. The reaction was stopped by adding 80 µL of 0.3 M sodium acetate pH 5.5 and 10 µg of transfer RNA (tRNA). Labeled DNAs were extracted with phenol once and precipitated with two volumes of cold ethanol. Pellets were washed with 70% ethanol, resuspended in 10 µL of sample loading buffer (95% formamide, 10 mM EDTA, 20 mM NaOH, 0.025% bromophenol blue, 0.025% xylene cyanol) and denatured 3 min at 95°C. A 5-µL volume of each sample was loaded onto a 5% sequencing gel and electrophoresed at 50 W. Dried gels were analyzed with a PhosphorImager® (Molecular Dynamics, Sunnyvale, CA, USA).

When using either this protocol in absence of DMSO or several other standard protocols previously described for DMS-LM-PCR genomic footprinting analysis (1,3,5–7,9), we were unable to generate DNA ladders encompassing more than 40 bp upstream of the designed oligonucleotides (Figure 1B, the dark arrow in Figure 1A indicates the position of this DNA elongation block). This block was not over by varying all three annealing temperatures (T_an/el, T_an/amp and T_an/lab) neither individually nor simultaneously. In addition, the highest possible temperature tested (76°C) led to a strong decrease of the ladder signal without overcoming the elongation block (data not shown).

By contrast, in the presence of DMSO, this block completely disappeared, allowing us to detect the in vivo protection of a sequence identified as a putative SP1 binding site (Figure 1B). In conclusion, in one day, the LM-PCR procedure described in this study allows the in vivo footprinting analysis of GC-rich genomic sequences that are otherwise difficult or impossible to analyze by this very informative technique.

REFERENCES

This work was supported by grants from the French CNRS (ATIPE n°3), from the Fondation pour la Recherche Medicale (FRM) and from l’Association pour la Recherche contre le Cancer (ARC). L.F. is supported by an EEC/TMR fellowship and J.P. by a Boehringer Ingelheim predoctoral fellowship. Address correspondence to Dr. Claude Sardet, Institut de Génétique Moléculaire, UMR 5535 CNRS, 1919 Route de Mende 34293, Montpellier cedex 5, France. Internet: sardet@jones.igm.cnrs-mop.fr

Received 29 October 1998; accepted 8 February 1999.

L. Le Cam, J. Polanowska, L. Fajas, E. FabbriZio and C. Sardet
Institut de Génétique Moléculaire, UMR 5535 CNRS
Montpellier, France