We constructed an improved vector pNSGroE for gene expression studies in Brucella spp. It is derived from the broad host range cloning vector pBBR1MCS (1). This new plasmid has several advantages over pBBR1MCS or its derivatives pBBGroE (2): (i) it is smaller in size, 2.9 kb; (ii) it expresses proteins as His-tagged fusion for easy detection and purification; (iii) it carries the groE promoter for constitutive expression that is enhanced under conditions of stress in vitro and in vivo; and (iv) it has higher levels of heterologous protein expression. Our expression studies in Brucella abortus strain RB51 indicated that the level of heterologous protein expression is higher with pNSGroE compared to pBBGroE vector. We have also demonstrated the ability of the new vector to express heterologous fusion proteins stably in Brucella species.

The smaller size of the new vector was achieved by combining only the very essential elements for replication and expression [minimum origin of replication, promoter, antibiotic selection marker, and multiple cloning sites (MCS)] and removing all nonessential elements in the original vector pBBR1MCS or pBBGroE (lacZ gene, mobilization gene, and 1 kb upstream of the groE promoter). The vector was constructed by excision of a 185-bp fragment containing the MCS of pRSETA vector (Invitrogen, Carlsbad, CA, USA) using XbaI and HindIII. This fragment was cloned into XbaI and HindIII sites of pGEM11 vector (Promega, Madison, WI, USA) to form construct A. The groE promoter of Brucella spp. was amplified from the genomic DNA of B. abortus strain 2308 using Platinum® PCR SuperMix High Fidelity kit (Invitrogen). In the reverse primer (Table 1), six histidine and one glycine residues were engineered after the translational start codon to facilitate the epitope tagging at the amino terminus of any expressed protein. The amplified groE promoter was cloned into BamHI and SalI sites of construct A to form construct B. The rep gene necessary for the replication of pBBR1 plasmid (3) was amplified along with its own promoter from the pBBR1MCS vector using a primer pair with SalI and XbaI sites. The chloramphenicol resistance gene (cat), along with its own promoter, was amplified from the pBBR1MCS using a primer pair with SpeI and HindIII sites. An XbaI site was engineered into the reverse primer of the cat gene to add an extra unique restriction site within the MCS of the new plasmid followed by a transcriptional stop codon.

The groE promoter along with the downstream MCS was excised from construct B using SalI and HindIII sites. The rep gene was digested with SalI and XbaI, and the cat gene product was digested with SpeI and HindIII. The three fragments were purified and ligated to form plasmid pNSGroE (Figure 1) (GenBank® accession no. AY576605). Strain RB51 was transformed by electroporation according
to a previously described method (4). With the minimization of the size, the transformation efficiency of the pNSGroE vector in B. abortus strain RB51 increased 452 times compared to the pBBGroE vector. Both plasmids were found to be stable after eight serial passages over 24 days on tryptic soy agar (TSA) plates in the absence of chloramphenicol selection.

Western blot analysis was performed by loading the same amount of protein extracted from strain RB51pNSGroE/GFP and RB51pBBGroE/GFP, and membranes were developed with Anti-HisG-HRP Antibody (1:5000; Invitrogen) for detection of recombinant green fluorescent protein (GFP) containing a polyhistadine sequence and monoclonal anti-GFP antibodies (1:1000; BD Biosciences Clontech, Palo Alto, CA, USA). The analyses of the band intensities were accomplished with a Kodak Digital-Science Image Station 440CF (Eastman Kodak, Rochester, NY, USA). The expression of GFP from strain RB51pNSGroE/GFP was 1.7-fold more than that of strain RB51pBBGroE/GFP as estimated by densitometry of Western blot analyses visualized using monoclonal anti-GFP antibodies (data not shown). We have shown the usefulness of His-tagged fusion protein expression in Brucella by demonstrating the specificity, sensitivity, and ease of detection of the expressed fusion protein with anti-His antibodies (Figure 2A), which also can be exploited for affinity purification as well as for posttranslational modification studies of the proteins expressed in Brucella spp.

We studied the activity of the new vector and compared the level of expression in vivo. A promoterless GFP gene was excised from pGFPuv vector (BD Biosciences Clontech) and cloned in frame downstream of the promoter in the MCS of pNSGroE and pBBGroE and used as a visual marker of gene expression and promoter activity inside the macrophage cell line J774.A1 (5). Fluorescence microscopic examination and expression of the GFP in the macrophage cell line infected with RB51pNSGroE/GFP were visualized after 4 and 24 h using a Zeiss LSM 510 laser scanning microscope (Carl Zeiss, Thornwood, NY, USA). The fluorescence observed clearly demonstrates the ability of pNSGroE vector to express GFP intracellularly inside macrophages (Figure 2B). Fluorescence

![Image of Western blot analysis showing the expression of GFP in Brucella abortus RB51 and the specificity and sensitivity of detection of the expressed fusion protein using anti-His antibodies. Lane 1, pNSGroE/GFP that expresses genes as a His-tag fusion; lane 2, pBBGroE/GFP does not express genes as a His fusion protein and cannot be recognized by the anti-His antibodies. (B) Confocal image of J774.A1 cells infected with recombinant B. abortus strain RB51 that has been transformed with pNSGroE vector expressing GFP (RB51pNSGroE/GFP). Fluorescent image on the left, transmitted light image in the middle, and overlay image on the right. (C) Western blot analysis showing the expression of pNSGroE vector using anti-His antibodies. Lane 1, expression of GFP in B. abortus strain RB51; lane 2, expression of red fluorescence protein (RFP) in B. abortus strain 2308; lane 3, expression of GFP in Ochrobactrum anthropi strain 49237.]
intensity measured by flow cytometry of the infected macrophages was 2-fold higher after 24 h of macrophage infection with strain RB51pNSGroE/GFP relative to those infected with strain RB51pBBGroE/GFP (data not shown). In order to study the expression of \textit{Escherichia coli} \(\beta\)-galactosidase in \textit{B. abortus} strain RB51, a 2.9-kb insert containing the \(lacZ\) gene was excised from pRSETB/\(\beta\)-gal (Invitrogen) and cloned into pNSGroE and pBBGroE. The expression of \(\beta\)-galactosidase and enzyme activity, as calculated in modified Miller units, was compared between strain RB51pNSGroE/LacZ and RB51pBBGroE/LacZ. Without any heat-shock stimulus, the enzyme activity in strain RB51pNSGroE/LacZ was approximately twice compared to that expressed by strain RB51pBBGroE/LacZ. The \(\beta\)-galactosidase activity in both strains increased by 25\% after heat-shock treatment for 20 min, reflecting a characteristic feature of the groE promoter.

Previous studies have shown that pBBR1MCS replicates and is stably maintained in all \textit{Brucella} spp. (6). Therefore, the pNSGroE expression vector should also be useful in all \textit{Brucella} spp. So far, we have expressed GFP and red fluorescence protein (RFP) successfully in \textit{B. abortus} strain 2308 and \textit{Ochrobactrum anthropi} with sequence similarities to \textit{Bordetella bronchiseptica} with sequence similarities to plasmids from \textit{Gram-positive} organisms. Mol. Microbiol. 6:1785-1799.

ACKNOWLEDGMENTS

Appreciation is expressed to Dr. John McDowell (Virginia Tech) for his suggestions. We would like to thank Mrs. Kay Carlson, Dr. Abey Bandara, and Ms. Sheela Ramamoorthy of the Center for Molecular Medicine and Infectious Disease (CMMID) at Virginia Tech for their advice and support.

COMPETING INTERESTS

STATEMENT

The authors declare no conflicts of interest.

REFERENCES

Received 28 April 2004; accepted 8 July 2004.

Address correspondence to Namalwar Sriranganathan, Department of Biomedical Sciences and Pathobiology, Center of Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, VA 24061-0342, USA. e-mail: nathans@vt.edu

Method based on electrophoresis and gel extraction for obtaining genomic DNA-free cDNA without DNase treatment

Laura Jaakola, Anna Maria Pirttilä, Jaana Vuosku, and Anja Hohtola
University of Oulu, Oulu, Finland

For studying differential gene expression by reverse-transcriptase PCR (RT-PCR) applications, eliminating genomic DNA contamination from the cDNA is essential prior to amplification of the specific gene sequence. Residual genomic DNA can disturb the amplification of the target gene from cDNA and lead to false-positive results. DNase I treatment is generally used to remove genomic DNA from RNA samples. However, RNA can degrade totally or partially during the DNase treatment. It has also been shown that some contamination of genomic DNA can remain after the DNase treatment, even after an overnight incubation (1). Certain tissue types can be a problem because some contain elevated levels of RNases (2,3) or a limited amount of RNA (4). Fruit tissues are regarded as particularly problematic because of high amounts of secondary metabolites, polysaccharides, and elevated levels of RNases (5). In our experiments with RNA from different plant tissues, especially bilberry (\textit{Vaccinium myrtillus}) fruit and leaf, we found that RNA degraded during the DNase treatment. We also noticed that despite the DNase treatment, some...