Fluorescent imaging of cytoskeletal structures permits studies of both organization within the cell and dynamic reorganization of the cytoskeleton itself. Traditional fluorescent labels of microtubules, part of the cytoskeleton, have been used to study microtubule localization, structure, and dynamics, both in vivo and in vitro. However, shortcomings of existing labels make imaging of microtubules with high precision light microscopy difficult. In this paper, we report a new fluorescent labeling technique for microtubules, which involves a GTP analog modified with a bright, organic fluorophore (TAMRA, Cy3, or Cy5). This fluorescent GTP binds to a specific site, the exchangeable site, on tubulin in solution with a dissociation constant of 1.0 ± 0.4 µM. Furthermore, the label becomes permanently incorporated into the microtubule lattice once tubulin polymerizes. We show that this label is usable as a single molecule fluorescence probe with nanometer precision and expect it to be useful for modern subdiffraction optical microscopy of microtubules and the cytoskeleton.

Fluorescence labeling is a standard tool for studies of structure and dynamics in biological systems. Recent improvements in single molecule fluorescence localization, such as stochastic optical reconstruction microscopy (STORM) (1) and photoactivated localization microscopy (PALM) (2), have permitted near electron-microscope resolution of cellular structures. Fluorescence imaging with one-nanometer accuracy (FIONA) has been used to study dynamics in motor protein and membrane systems in vivo and in vitro (3–5). A key requirement to image structures with high precision is the use of a bright organic fluorophore targeted to a specific structural position in the system of interest.

One such system is the microtubule component of the cytoskeleton. Microtubules are micrometer-long, 25-nm wide polymers of tubulin that span most animal cells. Microtubules play a role in a number of cellular functions, including intracellular transport and cell division, in conjunction with a wide variety of microtubule-associated proteins (MAPs) (6). Motor proteins combined with polar microtubules result in unidirectional transport to a well-defined destination, for example, the nerve growth cone in fast axonal transport (7). Intrinsic microtubule dynamics (8) permit rapid reconfiguration of the cytoskeleton, and MAPs associated with microtubule stabilization and destabilization, such as MAP1 and katanin, regulate these intrinsic dynamics in cells (9).

To study microtubule function in vivo and in vitro, fluorescent probes have been used to examine properties such as microtubule localization, transport, dynamics, and stiffness. Immunofluorescent labeling of microtubules in fixed cells has been used to study microtubule localization (10–12). Injection into live cells of tubulin covalently labeled with an organic fluorophore has been used to study both localization and microtubule dynamics (polymerization and depolymerization) (13–15). In vitro, covalent labeling has been used for dynamics and stiffness studies (16,17). Fluorescently modified paclitaxel, a small molecule that stabilizes microtubules against depolymerization, has been used to study microtubule localization in vivo and microtubule interactions in vitro (18,19). Green fluorescent protein-tubulin fusions have likewise been used for studies of microtubule localization and dynamics in live cells (20,21). Finally, a fluorescent GTP analog has been used to polymerize microtubules in vitro (22). However, the existing fluorescent labels of microtubules and tubulin suffer from a number of drawbacks. Immunofluorescent labeling requires fixed cells and therefore cannot be used to investigate microtubule dynamics. Covalent labeling of tubulin with organic fluorophores is typically done at a random surface amine, which leads to uncertainty in the structural localization of the fluorophore. The drug paclitaxel inhibits microtubule depolymerization and cannot be used to study microtubule dynamics. The existing fluorescent GTP analogs either prevent polymerization (23) or are so dim as to eliminate the possibility of single fluorophore imaging, useful in both dynamics and structural studies of microtubules. In particular, there is a need for a structurally specific, permanent, bright fluorophore to label tubulin to take advantage of the capabilities of high precision optical techniques such as FIONA, STORM, and PALM. Such a high-precision label could be used to answer questions regarding long-range kinesin interactions via microtubule structure (24) or dynamic changes in microtubule protofilament number upon paclitaxel binding (25) or tau binding (26).

In this work, we present a complementary fluorescent label of microtubules that does...
not suffer from the above limitations. A fluorescent GTP analog, TAMRA-EDA-GTP (27), now commercially available, along with Cy3-EDA-GTP and Cy5-EDA-GTP are used to visualize microtubules in vitro. These analogs are bright enough for single molecule studies, specific to the exchangeable GTP binding site on tubulin, permanently incorporated into the microtubule lattice, and do not interfere with the binding and action of a prototypical MAP, the motor protein kinesin-1.

Materials and methods

Microtubule labeling and polymerization

Microtubules were labeled by fluorescent GTP analogs as part of the microtubule polymerization procedure from Weisenberg (28), modified as follows. Tubulin protein was purified from calf brains (29) and stored in 0.5-mg aliquots in 0.2 mM GTP at -80°C. Tubulin, GTP, and either TAMRA-EDA-GTP, Cy3-EDA-GTP, or Cy5-EDA-GTP (NU-820-TAM, NU-820-CY3, NU-820-CY5, respectively; Jena Bioscience, Jena, Germany), hereafter referred to as fluorescent GTP, were mixed with glycerol microtubule buffer (MT buffer: 80 mM PIPES, 10 mM MgCl₂, 4 mM EGTA, pH 6.7, 30% w/v sucrose, 40 µM paclitaxel added just before use). Centrifugation caused polymerized microtubules to pellet through the cushion, while the remaining free tubulin and fluorescent GTP stayed above the sucrose cushion and could be removed (Table 1, steps 6–10). The pellet of microtubuses was resuspended in room temperature storage buffer (50 mM imidazole, 50 mM KCl, 4 mM MgCl₂, 2 mM EGTA, pH 6.7, 40 µM paclitaxel added just before use), with a final concentration of approximately 5 mg/mL tubulin. The microtubules were then stored at room temperature in the dark (to prevent photobleaching) for up to 2 weeks before viewing.

Imaging

Fluorescent GTP-labeled microtubules were viewed by a custom-built total internal reflection fluorescence (TIRF) microscope (30). The fluorophore was excited using a 532-nm laser at approximately 5 mW source power (Ventsus VIS 532; LaserQuantum, Stockport, UK) and imaged via a low light amplified charge-coupled device (CCD) camera (iXon DV 897; Andor Technology, Belfast, Ireland). In preparation for viewing, the solution of polymerized microtubules was diluted to between 0.25 µg/mL and 0.25 mg/mL in storage buffer to enable single microtubule viewing. This diluted microtubule solution was then washed into a flow cell made with one 24 × 60 mm, No. 1-1/2 glass coverslip (VWR, West Chester, PA, USA) treated with VECTABOND (Cat. no. SP-1800; Vector Laboratories, Burlingame, CA, USA) according to the manufacturer’s instructions, and one 22 × 22 mm No. 1 glass coverslip, separated by either a thin layer of high-vacuum grease (Dow Corning, Midland, MI, USA) or double-sided tape. The VECTABOND treatment caused the microtubules to adhere to the slide surface. To reduce photobleaching of the fluorescent GTP, an oxygen-scavenging solution (5) consisting of storage buffer with 6 mg/mL glucose, 166.5 U/µL glucose oxidase (Cat. no. G2133; Sigma-Aldrich, St. Louis, MO, USA), 260 U/µL catalase (C100; Sigma-Aldrich), and 1% 2-mercaptoethanol was washed over the microtubules prior to laser illumination and viewing.

Kinesin-1–quantum dot binding to microtubules

For some experiments, a control was required to confirm the existence of microtubules that were sparsely labeled or completely unlabeled by fluorescent GTP. The existence of microtubules was tested by taking advantage of the specific binding of kinesin-1 to microtubules. Streptavidin-conjugated fluorescent quantum dots (Cat. no. Q10121MP; Invitrogen, Carlsbad, CA, USA) and biotin-kinesin (31) were diluted to 20 nM in storage buffer, mixed, and incubated for 15 min to form a kinesin-quantum dot complex. This solution was further diluted to 10 pM in the oxygen-scavenging solution with 1 mM AMP-PNP (Cat. no. A2647; Sigma-Aldrich) and washed into the flow cell. The kinesin-quantum dot complex binds to microtubules specifically and tightly in the presence of AMP-PNP. At 10 pM, kinesin-quantum dot complexes were separated by more than the diffraction limit. Labeling density was determined by counting kinesin-quantum dot complexes and dividing by microtubule contour length.

Microtubule gliding assay

To test whether kinesin-1 motility was prevented by TAMRA-EDA-GTP, a microtubule gliding assay was performed, essentially as described previously (32), with the following modifications. The biotin-kinesin (K401-BIO) used for quantum-dot binding was washed over the microtubules prior to laser illumination and viewing.

Fluorescence labeling analysis

To identify the presence or absence of labeling, image analysis was initially done qualitatively by eye. To quantify the degree of microtubule labeling by fluorescent GTP, the following general algorithm was used. First, for a given sample, flow cell, and imaging condition, the intensity of a single fluorophore I was measured by integrating the image intensity of a small
region containing a single spot before and after photobleaching. Second, the intensity per unit length of a microtubule I_n was calculated by (i) integrating the intensity of a region containing a microtubule, (ii) subtracting the background that was found by integrating the intensity of an identically sized region adjacent to the microtubule, and (iii) dividing this background-subtracted intensity by the length of the microtubule. The number of fluorophores per unit length was calculated by dividing I_n by I. The fraction of exchangeable GTP sites labeled was calculated by dividing the number of fluorophores by the number of sites, based on a 13 protofilament, 8 nm tubulin dimer model of a microtubule (i.e., 1.6 sites/nm). Each of the intensity measurements was made using Solis (i) software (Andor Technology, Belfast, Ireland).

FIONA analysis
Single particle tracking of fluorescent spots was done combining the techniques of Yildiz et al. (5) and Crocker and Grier (33) in a custom program written in IDL (ITT, Boulder, CO, USA). Briefly, the particle tracking of Crocker was used to identify candidate particles; high precision positions were found using a Gaussian fit to the intensity profile as described by Yildiz et al. (5).

Microtubule depolymerization
To check whether the labeling technique allows microtubule depolymerization, microtubules were polymerized in the presence of TAMRA-EDA-GTP as described, except that paclitaxel was not added in step 5 (Table 1). After centrifugation, a microtubule pellet was still observed. Following a brief (10-min) cold incubation, polymerized microtubules were no longer observed under the microscope.

Results and discussion
Rationale
The tubulin dimer, the unit that polymerizes into a microtubule, contains exactly two GTP binding sites. The nonexchangeable (N) site at the interface of the α- and β-tubulin subunits irreversibly binds GTP prior to tubulin purification (34). The exchangeable (E) site, on the β-tubulin subunit (35), allows GTP to bind and unbind in unpolymerized tubulin, but becomes inaccessible to GTP exchange once the tubulin dimer is incorporated into a microtubule (36). As a previous study had shown that GTP modified at the 2′ or 3′ position on the ribose is incorporated into microtubules (22), we chose to test whether GTP modified at the 2′ or 3′ location with a bright, single molecule fluorescence-capable fluorophore (TAMRA, Cy3, or Cy5) would bind to the E-site of the tubulin dimer and become incorporated into microtubules (see Figure 1A). We found that microtubules polymerized in vitro in the presence of small amounts of fluorescent GTP and larger amounts of unlabeled GTP do become fluorescently labeled (Figure 1, B–D), albeit relatively sparsely (at about 1% of available sites) due to the low affinity of tubulin for fluorescent GTP (see competition assay, below).

While we anticipated E-site labeling by fluorescent GTP, microtubule labeling by fluorescent GTP could alternatively be due to nonspecific binding or binding at sites other than the E-site of tubulin. To distinguish between binding at the E-site and at another nonspecific site, we performed two types of control experiments. Since each fluorescent GTP analog labeled microtubules similarly (Figure 1, B–D), we chose to use TAMRA-EDA-GTP for further characterization. To test whether TAMRA-EDA-GTP binds nonspecifically to the surface of already polymerized tubulin, we polymerized tubulin in the presence only of unlabeled GTP to create nonfluorescent microtubules. TAMRA-EDA-GTP was then added after step 5 of the protocol in Table 1, followed by further incubation at 37°C to allow for

Power and Performance at your fingertips

- Live sensor feedback for superior temperature control
- Large graphical touch screen user interface
- 96 well gradient thermal cycler
- Rapid intuitive “drag and drop” program creation

Only $3,995

Denville Scientific…Your Source for Benchtop Equipment

Pipettes • Centrifuges • Electrophoresis Equipment • Shakers • Rockers

www.densci.com
potential surface binding. Microtubules were separated from free TAMRA-EDA-GTP as described in the Table 1. In this case, microtubules showed no fluorescent labeling. Microtubule presence was confirmed by kinesin-quantum dot labeling, as described in the Materials and methods section. The labeling density of kinesin-quantum dot complexes on TAMRA-EDA-GTP microtubules was similar to the labeling density on unlabeled microtubules (2.1 ± 0.5 μm⁻¹ and 1.2 ± 0.4 μm⁻¹, respectively) (Supplementary Figure S1). Furthermore, kinesin-1 motility was examined using a microtubule gliding assay, in which kinesins bound to a glass surface push microtubules through solution (37). At 1 mM (saturating) ATP, microtubules densely labeled with TAMRA-EDA-GTP were pushed by kinesin at 475 ± 20 nm/s (Supplementary Figure S2), similar to previous results. At very low labeling densities (fewer than 1 TAMRA-EDA-GTP/μm), microtubules were pushed by kinesin at 450 ± 15 nm/s (Supplementary Figure S2). Together, the binding and velocity results indicate that TAMRA-EDA-GTP does not interfere with the MAP kinesin-1.

Alternately, TAMRA-EDA-GTP might become incorporated into growing microtubules, albeit not bound at the E-site. To test this possibility, we performed a competition assay between TAMRA-EDA-GTP and unlabeled GTP. If both bind to the E-site, we expect microtubule labeling to increase as the unlabeled GTP concentration decreases. Alternatively, if TAMRA-EDA-GTP binds nonspecifically, we expect microtubule labeling to be constant independent of unlabeled GTP concentration. As Figure 2 shows, we find that decreasing the concentration of unlabeled GTP present during polymerization results in increasing labeling by TAMRA-EDA-GTP. Indeed, the increase exactly follows a model in which both GTP and TAMRA-EDA-GTP bind to the same site at thermodynamic equilibrium, described in the Supplementary Materials. Our model assumes different dissociation constants for GTP and TAMRA-EDA-GTP from tubulin, equilibration of GTP or TAMRA-EDA-GTP on the E-site of unpolymerized tubulin (achieved by premixing GTP and TAMRA-EDA-GTP with tubulin prior to polymerization), and no exchange of nucleotide after polymerization. A fit to this model (solid line in Figure 2) indicates an E-site dissociation constant for TAMRA-EDA-GTP 75-fold weaker than that for GTP.

Using literature values for the E-site affinity for GTP (38), we find a dissociation constant of 1.0 ± 0.4 μM for TAMRA-EDA-GTP. In the limit of an infinite concentration of GTP (corresponding to the y-intercept), our model indicates a small residual amount of TAMRA-EDATAMRA-EDA-GTP. This interaction could be due to nonspecific binding of TAMRA-EDA-GTP to the microtubule surface, as suggested by the results of the competition assay.
EDA-GTP labeling: 0.15% ± 0.10% of sites. This residual labeling is much less than the labeling in Figures 1, B–D for comparison. Affinities for Cy3-EDA-GTP and Cy5-EDA-GTP were not determined quantitatively, but Figure 1, B–D shows similar levels of labeling for the three analogs.

To test whether the fluorescent GTP is not only a specific label but also a viable label for single molecule fluorescence, we observed microtubules labeled with TAMRA-EDA-GTP spaced by more than the optical diffraction limit (Figure 3A). We observed that individual fluorescent spots showed single-step photobleaching (Figure 3, B and C), indicating that each spot corresponds to a single TAMRA-EDA-GTP molecule. As the example in Figure 3C shows, a single spot emits >10^6 collectable photons. This single spot was also tracked with better than 10 nm precision for 150 frames (Figure 3D), similar to the 5 nm precision expected from single particle tracking theory (39). Indeed, by averaging over all 150 frames, this spot was localized to within 1 nm.

Finally, to ensure that the fluorescent GTP will be useful for a variety of labeling experiments, we tested whether the label remains stably bound to microtubules for long times. If binding is diffusion limited, we expect the micromolar dissociation constant to correspond to a dissociation time constant of about 10–100 s (40). As Figure 4 shows however, the binding is stable for >10 min, indicating TAMRA-EDA-GTP is trapped in the microtubule lattice. In addition, we have observed TAMRA-EDA-GTP microtubules stored for 2 weeks as described in Table 1 (that is, at room temperature, in the dark, and in the absence of free TAMRA-EDA-GTP). These microtubules remain fluorescent, indicating that the TAMRA-EDA-GTP is essentially irreversibly trapped in the microtubule lattice.

In summary, we have shown that a class of fluorescent molecules, GTP modified at the 2′ or 3′ location with a bright organic fluorophore, are a promising label of microtubules. These fluorescent GTP analogs bind to the E-site on tubulin, as indicated by the

Table 1. Fluorescent GTP microtubule labeling protocol.

<table>
<thead>
<tr>
<th>Step</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thaw tubulin as quickly and briefly as possible at 37°C. Chill on ice.</td>
</tr>
<tr>
<td>2</td>
<td>Spin out insolubles, 20 min at 4°C, ~17,000× g.</td>
</tr>
<tr>
<td>3</td>
<td>Mix microtubule polymerization solution: tubulin in MT buffer to 5 mg/mL, fluorescent GTP to 20 µM, GTP to 0.2 mM. Solution will be pink for TAMRA and Cy3, blue for Cy5.</td>
</tr>
<tr>
<td>4</td>
<td>Incubate for 30 min at 37°C, light-protected (e.g., wrapped in aluminum foil). Solution will turn slightly turbid.</td>
</tr>
<tr>
<td>5</td>
<td>Add paclitaxel to 40 µM, mix gently but thoroughly, incubate a further 20 min at 37°C, light-protected.</td>
</tr>
<tr>
<td>6</td>
<td>Gently layer MT solution onto a 100-µL, 30% w/v room temperature sucrose cushion. Spin for 20 min at room temperature, ~17,000× g. Light gray pellet may or may not be apparent.</td>
</tr>
<tr>
<td>7</td>
<td>Draw off colored layer (MT buffer with free fluorescent GTP) from top, leaving clear sucrose cushion.</td>
</tr>
<tr>
<td>8</td>
<td>Rinse remaining colored residue with 50 µL 30% (w/v) sucrose buffer, draw off.</td>
</tr>
<tr>
<td>9</td>
<td>Draw off clear sucrose cushion, avoiding pellet at bottom of tube.</td>
</tr>
<tr>
<td>10</td>
<td>Very gently rinse pellet with 50 µL room temperature storage buffer. Do not resuspend. Draw off buffer.</td>
</tr>
<tr>
<td>11</td>
<td>Resuspend pellet in room temperature storage buffer to original volume of step 3 (~5 mg/mL). Store, light-protected, ≤ 2 weeks, at room temperature.</td>
</tr>
</tbody>
</table>
competition assay of Figure 2, and remain tightly bound for long periods. They do not interfere with the binding of the MAP kinesin-1. We show that they are usable for FIONA measurements when microtubules are sparsely labeled. However, at high microtubule labeling densities (in the absence of unlabeled GTP), we also expect this label to be viable for super-resolution imaging of microtubules via STORM (1). Since Cy3-EDA-GTP labels microtubules well, stochastic switching of E-site bound Cy3-EDA-GTP between bright and dark states would allow protofilament-level resolution of microtubules in an all-optical system, enabling a new class of high-resolution studies of microtubules and the cytoskeleton.

Acknowledgments
This work was supported by the Research Corporation for Science Advancement. We further thank Jeff Gelles and Helen Lee for assistance with the noncommercial version of TAMRA-EDA-GTP.

Competing interests
The authors declare no competing interests.

References

Received 14 October 2010; accepted 16 May 2011.

Address correspondence to Douglas S. Martin, Lawrence University, 711 E. Boldt Way, SPC-24, Appleton, WI 54911, USA. e-mail: douglas.s.martin@lawrence.edu

To purchase reprints of this article, contact: biotechniques@fosterprinting.com