2-D Protein Crystals as an Immobilization Matrix for Producing Reaction Zones in Dipstick-Style Immunoassays

ABSTRACT

In the present study, the applicability of crystalline bacterial cell-surface layers (S-layers) as novel immobilization matrices and reaction zones for dipstick-style immunoassays was investigated. For this purpose, S-layer-carrying cell-wall fragments from Bacillus sphaericus CCM 2120 were deposited on a microporous support, and the S-layer protein was cross-linked with glutaraldehyde. For developing appropriate test systems, either human IgG was directly linked to the carboxylic acid groups from the S-layer protein or it was immobilized using Protein A or, after biotinylation, using streptavidin. A clear correlation was obtained between the amount of anti-human IgG applied and the absorbance values in the immunoassays. S-layers with covalently bound recombinant major birch pollen allergen were used for quantitative and semiquantitative determination of an antibody raised against it. Using S-layers as an immobilization matrix in comparison to amorphous polymers has advantages in that the closed monolayers of functional macromolecules on their outermost surface allow for strong signals in immunoassays, almost completely eliminates background and prevents diffusion.

INTRODUCTION

Crystalline bacterial cell-surface layers (S-layers) represent the outermost cell envelope component of many eu- and archaebacteria and are a common feature of archaeobacteria (2,13,16). S-layers completely cover the cell surface during all stages of bacterial growth and division, and exhibit oblique (p1 and p2), square (p4) or hexagonal (p3 and p6) lattice symmetry. Depending on the lattice type, one morphological unit is composed of either one, two, three, four or six identical protein or glycoprotein subunits, with molecular weights ranging from 40,000 to 200,000. High-resolution electron microscopic and permeability studies revealed that S-layers from Bacillaceae have a pore size of 4–5 nm (14,18). Because of the presence of pores identical in size and morphology, and the high density and regular arrangement of amino and carboxylic acid groups on the outermost surface, isolated S-layers or S-layer-carrying cell-wall fragments were used for the production of the first type of isoporous ultrafiltration membranes (14,18) and as a matrix for covalent binding of biologically active macromolecules such as enzymes and ligands (15). In comparison to conventional immobilization matrices, S-layer lattices have the advantage that a closed monolayer of biologically active macromolecules can be built up on their surface, thereby avoiding diffusion in the membranes and preventing unspecific adsorption (15).

In the present study, the applicability of S-layer ultrafiltration membranes (SUMs) as novel immobilization matrices and reaction zones for dipstick-style immunoassays was investigated. S-layer-carrying cell walls from Bacillus sphaericus CCM 2120 were selected for SUM production because of the detailed knowledge acquired of their morphological, surface and permeability properties, as well as their great potential for chemical modification (18). Among the SUMs produced using S-layer-carrying cell-wall fragments from Bacillus strains, those from B. sphaericus CCM 2120 showed the highest storage stability (at least one year at 4°C).

To obtain information on the antibody-binding capacity of SUMs, either human IgG was directly linked to the carboxylic acid groups from the S-layer protein or it was immobilized using Protein A or, after biotinylation, using streptavidin. The three different methods for immobilizing IgG for immunoassays were compared.

For a more specific test system with economic relevance, the recombinant major birch pollen allergen r Bet v 1a (4) was covalently bound to the S-layer lattice. In northern and central Europe, at least 15% of the population is affected by atopic allergy caused by the pollen of birch (4). Whole birch pollen extracts are used for immobilization in all test systems available on the market. This frequently leads to undesired side reactions. In the present study, the immobilization of recombinant birch pollen allergen to SUMs, which was used for quantification of the monoclonal antibody BIP 1 (8), is described for the first time.
MATERIALS AND METHODS

Organism, Growth Conditions, Cell-Wall Preparation, Production of S-Layer Ultrafiltration Membranes (SUMs) and Preparation of S-Layer Microparticles (SMP)

*B. sphaericus* CCM 2120 was grown as described in a previous article (18). Cell-wall preparation was performed according to the procedure described in Reference 12, in which cells were disrupted by ultrasonication. The purity of the cell-wall fragments was checked on negatively stained and ultrathin-sectioned preparations by electron microscopy (12) and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The S-layer protein content of the cell-wall fragments was determined by the method of Lowry et al. (11). For production of SUMs, S-layer-carrying cell-wall fragments from *B. sphaericus* CCM 2120 were deposited on nylon microfiltration membranes in a pressure-dependent procedure. After cross-linking the S-layer lattice with glutaraldehyde, Schiff bases were reduced with sodium borohydride (18). For the preparation of SMP, 100 mg of wet pellets of S-layer-carrying cell-wall fragments were suspended in 100 mL 0.1 M phosphate buffer (pH 7.2, 20°C). During stirring the suspension at 500 rpm, 1 mL of glutaraldehyde (50% vol/vol in distilled water) was added to achieve a final concentration of 0.5% vol/vol. After 30 min, the suspension was centrifuged for 20 min at 50 000×g at 4°C, the pellets were repeatedly washed with distilled water and Schiff bases were finally reduced with sodium borohydride (18). S-layer-carrying cell-wall fragments in which the S-layer protein was fixed with glutaraldehyde are referred to as S-layer microparticles (SMP).

Immobilization of Protein A, Human IgG, r Bet v 1a and Streptavidin to SUMs

When SUMs were used as matrices for immobilization of macromolecules, activation of carboxylic acid groups of the S-layer protein and the immobilization procedure were carried out in a Model 202 chamber from Amicon (Beverly, MA, USA), into which SUM disks with a diameter of 62 mm could be inserted. Since only the SUM surface was exposed, diffusion of macromolecules into the microfiltration membrane was prevented. For immobilization of Protein A, human IgG and r Bet v 1a, carboxylic acid groups from the S-layer protein were activated with EDC at pH 4.75 for 60 min at 20°C. Subsequently, the SUMs were washed with ice-cold distilled water and incubated with 10 mL of the respective protein solution (1 mg/62-mm-diameter SUM in distilled water, pH adjusted to 9.0 with 0.1 N NaOH) for 18 h at 4°C. Unbound protein was removed by washing the SUM surface with 50 mM phosphate buffer containing 140 mM NaCl (phosphate-buffered saline [PBS]) and 0.1% Triton® X-100. SUMs with immobilized Protein A were subsequently incubated with human IgG (1 mg/62-mm-diameter SUM in 10 mL 0.1 M glycine–NaOH buffer, pH 9.0) for 18 h at 4°C.

For immobilization of biotin, free carboxylic acid groups from the acidic amino acids of the S-layer protein were first converted into amino groups. This was done by binding ethylenediamine to EDC-activated carboxylic acid groups under conditions given in Reference 18. Biotinylation of SUMs with free amino groups was carried out according to the procedure given by Pierce (Rockford, IL, USA) by using ImmunoPure® Sulfo-NHS-Biotin. For the removal of unbound biotin, SUMs were washed at least three times with 50 mM PBS containing 0.1% Triton X-100. Subsequently, 10 mL 0.1 M glycine–NaOH buffer (pH 7.0) containing 1 mg streptavidin (Promega, Madison, WI, USA) were put into the chamber loaded with SUM. After incubation for 18 h at 4°C, streptavidin–SUMs were used for binding of biotinylated human IgG (1.5 mg/62-mm-diameter SUM in 10 mL 0.1 M glycine–NaOH buffer, pH 9.0) for 4 h at 4°C. Biotinylation of human IgG with Sulfo-NHS-Biotin, determination of the protein content (Protein Assay Kit; Bio-Rad, Hercules, CA, USA) and calculation of the molar ratio of biotin to IgG in the conjugate were performed according to the procedures given by the manufacturers and by applying the HABA test (7).

For semiquantitative determination of the amount of streptavidin, of human IgG bound to Protein A–SUMs and of biotinylated human IgG adsorbed to the streptavidin–SUM, disks with a diameter of 14 mm were cut into small pieces (ca. 1 mm) and extracted with 200 μL 2% SDS solution. Subsequently, 5 μL of these extracts were applied to SDS gels. A series of human IgG and streptavidin standards allowed the semi-quantitative determination of bound proteins.

Studies on the Applicability of SUMs as Matrices for Immunoassays and Dipsticks

For comparing the three different methods of immobilizing human IgG, disks with a diameter of 14 mm were punched out from the SUMs (62-mm diameter) obtained according to the procedures described above and were fixed.
in a chamber (MPS-1; Amicon). Subsequently, anti-human IgG (whole molecule; rabbit; Sigma-Aldrich) was applied in different concentrations in blocking buffer (50 mM PBS containing 1% bovine serum albumin [BSA], pH 7.2) for 1 h at 20°C. Unbound rabbit IgG was removed by rinsing the SUM surface with 50 mM PBS containing 0.1% Triton X-100 (wash buffer). After adding 300 µL of anti-rabbit alkaline phosphatase conjugate (whole molecule, goat; Sigma-Aldrich; diluted 1:2000 in blocking buffer) and incubation for 30 min at 20°C, unbound conjugate was removed with wash buffer. As substrate, p-nitrophenylphosphate (pNPP; Sigma-Aldrich; 1 mg/mL in 1 M diethanolamine buffer containing 0.5 M MgCl₂, pH 9.8) was used. After 10 min incubation in the dark at 20°C, 100 µL of the samples were transferred to microplates, and the intensity of the color generated was determined at 405 nm on an Easy Reader EAR® 400 (SLT Labinstruments, Salsburg, Austria).

SUMs with immobilized r Bet v 1a were incubated with solutions containing BIP 1 (8) in different concentrations in blocking buffer. After incubation for 60 min at 20°C and at least three washing steps, anti-mouse alkaline phosphatase conjugate (whole molecule, goat; Sigma-Aldrich; diluted 1:1000 in blocking buffer) was transferred onto the SUM surface and incubated for 60 min. After three further washing steps, p-nitrophenylphosphate was used as soluble substrate for exact quantification. For semiquantitative determination, 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT; Sigma) was used as precipitate-forming substrate.

RESULTS

S-Layer-Carrying Cell-Wall Fragments from B. sphaericus CCM 2120

The S-layer lattice from B. sphaericus CCM 2120 shows square symmetry (Figure 1a) with a center-to-center spacing of the morphological units of 12.5 nm. The area occupied by one morphological unit is 156.25 nm². Each morphological unit is a tetramer composed of four identical subunits with a molecular weight of 127 000 (18). Ultrathin-sectioning of S-layer-carrying cell-wall fragments revealed a three-layered envelope profile consisting of the outer S-layer, the rigid peptidoglycan-containing layer and an inner S-layer (Figure 1b). Since both S-layers were bound to the peptidoglycan-containing layer with the same orientation, two identical S-layer surfaces were available for immobilization in SMP.

Immobilization of Protein A, Human IgG and r Bet v 1a to SMP

Protein A, human IgG and r Bet v 1a were immobilized to the EDC-activated carboxylic acid groups of the S-layer protein in SMP. The use of SMP allows exact quantification of the amount of immobilized foreign proteins, which is necessary for calculation of the binding density on the S-layer surface. As shown in Table 1, the binding capacity of the square S-layer lattice from B. sphaericus CCM 2120 for Protein A was 3.2 times higher than the theoretical saturation capacity of a planar surface calculated by using the Stokes radius (3). The observed difference between the actual binding capacity of the S-layer lattice and the theoretical value (Table 1) can be explained by the specific properties of Protein A. It is an extremely elongated molecule with numerous free amino groups at one end, the so-called X region (10). Thus, the high binding density obtained on the S-layer lattice strongly indicated that the Protein A molecules were immobilized.
Table 1. Immobilization Capacity of S-Layer Microparticles (SMP) from Bacillus sphaericus CCM 2120 for Protein A, Human IgG and r Bet v 1a

<table>
<thead>
<tr>
<th></th>
<th>Protein A</th>
<th>Human IgG</th>
<th>r Bet v 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>42 000</td>
<td>150 000</td>
<td>17 000</td>
</tr>
<tr>
<td>µg bound/mg wet pellet SMP(^a)</td>
<td>20.2</td>
<td>27.0</td>
<td>2.8</td>
</tr>
<tr>
<td>µg bound/mg S-layer protein</td>
<td>530</td>
<td>710</td>
<td>73</td>
</tr>
<tr>
<td>Molar ratio to S-layer subunits</td>
<td>1.6</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Molecules bound per unit cell (4 S-layer subunits)</td>
<td>6.4</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Stoke’s radius in nm</td>
<td>5</td>
<td>3.5–5.8</td>
<td></td>
</tr>
<tr>
<td>Cross-sectional area in nm(^2)</td>
<td>78.5</td>
<td>38.5–105.6</td>
<td></td>
</tr>
<tr>
<td>Theoretical number of molecules/cm(^2)</td>
<td>1.27 × 10(^{12})</td>
<td>2.59 × 10(^{12})–9.47 × 10(^{11})</td>
<td></td>
</tr>
<tr>
<td>Theoretical saturation capacity of a planar surface in µg/cm(^2)</td>
<td>0.09</td>
<td>0.65–0.24</td>
<td></td>
</tr>
<tr>
<td>Actual number of molecules bound/cm(^2) S-layer lattice</td>
<td>4.12 × 10(^{12})</td>
<td>1.53 × 10(^{12})</td>
<td></td>
</tr>
<tr>
<td>Actual binding capacity of the S-layer lattice in µg/cm(^2)</td>
<td>0.290</td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>% of theoretical saturation capacity</td>
<td>320</td>
<td>60–160</td>
<td></td>
</tr>
</tbody>
</table>

The theoretical saturation capacity of a planar surface was determined using the Stoke’s radius, calculated by Björk et al. (3) for Protein A and by Kim et al. (9) for human IgG.

\(^a\) One mg wet pellet of SMP contained 38.1 µg of S-layer protein.

SUMs covered with Protein A or streptavidin were used as matrices for binding either native or biotinylated human IgG. As determined by the HABA test (7), the molar ratio of biotin to human IgG was 6:1. SDS-PAGE of SDS extracts from SUMs showed that, per cm\(^2\) membrane area, about 800 ng of streptavidin could be immobilized. This amount corresponded to a closed monolayer of the ligand on the S-layer matrix. The binding capacity of Protein A–SUM was determined with 700 ng of human IgG per cm\(^2\), whereas only 150 ng of biotinylated human IgG could be immobilized per cm\(^2\) of streptavidin–SUM. The amount of human IgG bound to Protein A–SUM corresponded to the theoretical saturation capacity of a planar surface of 650 ng/cm\(^2\). Because of the specific property of Protein A to bind IgG by means of its Fc region, human IgG could be immobilized in an upright, uniformly oriented position, forming a closed monolayer. Depending on the orientation, the 150 ng of biotinylated IgG bound per cm\(^2\) on the streptavidin–SUM corresponded to 23%–63% of the theoretical saturation capacity of IgG bound to a planar surface (Figure 2).

SUM as Matrix for Dipstick-Style Immunoassays

To evaluate the suitability of SUMs as matrices for dipstick-style immunoassays, anti-human IgG was applied in different concentrations (15 to 1000 ng/mL) onto SUMs with immobilized human IgG. By using anti-rabbit IgG alkaline phosphatase conjugate in the detection system, a clear correlation could be detected between the amount of anti-human IgG applied and the absorbance measured in the immunoassay for each method of immobilization of human IgG. As shown in Figure 3, the highest values obtained were for Protein A–SUM. This was in accordance with the high density of immobilized human IgG.

Despite differences in the binding...
Research Reports

density of human IgG, either directly bound to carboxylic acid groups from the S-layer protein or to streptavidin–SUM after biotinylation, comparable absorbance values were observed by applying the same concentrations of anti-human IgG (Figure 3). This phenomenon can be explained primarily by the different methods used for IgG immobilization. It can be assumed that, due to the high density of the carboxylic acid groups in the S-layer lattice, multipoint attachment of the directly immobilized IgG molecules had occurred. This is known to lead to structural distortions and to conformational changes, which can therefore influence the biological recognition process (6).

In the case of biotinylated IgG, six biotin molecules were attached per molecule, which could anchor the IgG to the streptavidin–SUM (Figure 2). With all three matrices, very low unspecific adsorption could be observed (Figure 3).

Recombinant Bet v 1a was immobilized directly to the EDC-activated carboxylic acid groups on the S-layer protein of SUMs. The suitability of this matrix for immunoassays and dipsticks was proven by incubation with different concentrations of BIP 1. The resulting curve, when using pNPP as a soluble substrate, demonstrated satisfactory recognition of r Bet v 1a by BIP 1 over a wide concentration range (Figure 4). For visual detection of BIP 1 and semi-quantitative determination relevant to dipstick-style immunoassays, BCIP/NBT was chosen as a substrate, leading to insoluble products. The intensity of the precipitate formed on the SUM surface correlated well with the BIP 1 concentrations applied. The SUMs with immobilized r Bet v 1a showed absolutely no background reactions (Figure 5).

DISCUSSION

The square S-layer lattice from B. sphaericus CCM 2120 was used as model system for investigating the applicability of using SUM as an immobilization matrix and a reaction zone for dipstick-style immunoassays. S-layer-carrying cell wall fragments, which revealed a complete outer and inner S-layer (Figure 1b), were used for either the preparation of SMP or for the production of SUMs. Since in both cases the S-layer surface was exposed, studies on the binding capacity of SMP could be related directly to the binding capacity of SUMs. Because of the possibility of exact quantification, optimization of the immobilization procedures was done with SMP.

The binding capacity of the square S-layer lattice from B. sphaericus CCM 2120 for Protein A correlated well with data obtained in a previous study using the hexagonally ordered S-layer lattice from Thermoanaerobacter thermohydrodrosulfuricus L111-69 (19). On both S-layer lattices, the Protein A molecules were shown to be preferentially arranged with their longitudinal axis perpendicularly to the S-layer lattice. Otherwise, a binding capacity 3–4 times higher than the area theoretically required for a dense Protein A monolayer based on a Stoke’s radius of 5 nm would never have been achieved. Assuming that a Protein A monolayer was generated on the S-layer lattice, the actual radius of the elongated molecules was calculated to be in the range of 2.5 to 3 nm.

The binding of human IgG to Protein A–SUM led to the formation of a...
closed monolayer of densely packed IgG molecules (Figure 2). Because the anti-human IgG used in the present study was raised against the whole molecule, the uniform alignment of the IgG molecules cannot be responsible for the higher absorbance values determined for Protein A–SUM in the immunoassay (Figure 3) but would be advantageous for antigen recognition. Since steric reasons can be excluded, the high absorbance values achieved with Protein A–SUM were attributed to the higher packing density of the IgG molecules in comparison to that of streptavidin–SUM (Figure 2) or the covalently bound human IgG. On the other hand, the existence of a closed monolayer of uniformly oriented IgG molecules excludes any enhancing effect by the enzyme–antibody conjugate applied in the last step. By immobilizing Protein A to SUMs, a matrix with high affinity to human IgG or rabbit IgG was generated. However, Protein A–SUM cannot be used for the binding of immunoglobulins with low affinity to Protein A such as mouse IgG or goat IgG (10). In this case, direct covalent binding of the antibodies to the S-layer lattice or binding of biotinylated antibodies to a streptavidin–SUM is preferred.

The binding density determined for the covalently bound IgG and for the biotinylated IgG indicated a random orientation of the molecules on the S-

Figure 4. Absorbance values at 405 nm for different concentrations of BIP 1 applied to a SUM on which r Bet v 1a was covalently bound to carboxylic acid groups from the S-layer protein.

Figure 5. SUM discs with covalently bound r Bet v 1a demonstrating their applicability as reaction zone for dipsticks. By using BCIP/NBT substrate, the intensity of the precipitate formed on the SUM surface correlated well with the different concentrations of BIP 1 applied. (a–f) correspond to the different concentrations of BIP 1 applied in the immunoassay in Figure 4. (a = 0 µg/mL; b = 0.143 µg/mL; c = 0.287 µg/mL; d = 0.575 µg/mL; e = 1.15 µg/mL; f = 2.3 µg/mL).
layer lattice (Figure 2, a and c). Although the IgG binding capacity of streptavidin–SUM (150 ng IgG per cm² membrane area) was lower than the amount that could be bound covalently (375 ng per cm² membrane area), the absorbance values measured in the immunoassay were rather similar (Figure 3). These results indicated that, in comparison to the biotinylated IgG, recognition of the covalently bound human IgG by anti-human IgG was clearly reduced. However, all three methods for immobilizing human IgG on S-layer lattices led to reproducible results concerning the binding capacity. The correlation between increasing concentrations of anti-human IgG and increasing absorbance values confirmed that SUMs are well-suited as matrix for immunoassays (Figure 3). Nonspecific adsorption and background reactions were generally very low and in most cases negligible.

If SUMs were used as matrices for immobilization and reaction zones for dipstick-style immunoassays, diffusion of antibodies or antibody–enzyme conjugates into the highly absorptive microfiltration membrane supporting the S-layer-carrying cell-wall fragments had to be prevented. Currently, SUMs used for preparation of dipsticks are either glued together with the two microfiltration membranes facing each other or attached to polymer films (Mader, unpublished observation). Contrary to conventionally used microfiltration membranes, which can adsorb up to milligrams of proteins per cm² membrane area (1.5), the surface of SUMs revealed extremely low nonspecific adsorption and nearly no background without blocking steps in immunological reactions. The main reason for this advantage is seen in the well-defined physicochemical and morphological properties of S-layer lattices composed of identical protein subunits.

In summary, crystalline bacterial cell-surface layers represent unique matrices for a controlled immobilization of monomolecular layers of macromolecules. Because of their crystalline structure, along with the regular arrangement and well-defined orientations of functional groups down to the subnanometer range, S-layer lattices can predetermine the orientation of immobilized macromolecules, as shown for Protein A. Moreover, the presence of surface-located functional groups in high density on the S-layer lattice further allows for the application of a broad spectrum of chemical modification and coupling procedures for generating an immobilization matrix even for very specific demands (18). Since reproducible amounts of functional macromolecules, such as antibodies, enzymes and allergens, can be immobilized, SUMs provide a new type of reaction zone for quantitative and semi-quantitative immunoassays and dipstick test systems with constant signals.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Foundation, projects S72/02 and S 6002 BIO, and by the Federal Ministry of Science, Research and the Arts, Republic of Austria. We thank A. Jungbauer for critically reading the manuscript.

REFERENCES


Received 25 October 1995; accepted 9 May 1996.

Address correspondence to:
Margit Sára
Zentrum für Ultraschallforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie
Universität für Bodenkultur
Gregor Mendelstraße 33
A-1180 Vienna, Austria