of chromosomal transcriptional fusions in Gram-negative bacteria that are sensitive to trimethoprim. These include most members of the Enterobacteriaceae, such as Escherichia, Klebsiella and Proteus. However, it is particularly useful in studies on those Gram-negative bacteria that exhibit low-level resistance to trimethoprim but high resistance to other commonly used antibiotics, such as members of the genus Burkholderia (particularly the human pathogens B. cepacia and B. pseudomallei) and the opportunistic pathogen Stenotrophomonas maltophilia (formerly Xanthomonas maltophilia). The resultant single-copy fusions are more desirable for studying gene regulation because they avoid problems associated with multicopy systems such as the titration of regulatory proteins. This vector can also be adapted for the identification of bacterial promoters that are specifically expressed in an animal host or within cultured cell lines. The unique NotI site downstream of the promoterless cat gene facilitates the insertion of an additional reporter gene or antibiotic resistance marker as required.

REFERENCES

We thank Kenneth N. Timmis for providing pUTmini-Tn5Scn and Donald E. Woods for providing p34E-Tp. This work was supported by a studentship from the Division of Molecular and Genetic Medicine, University of Sheffield Medical School. Address correspondence to Dr. Mark S. Thomas or Dr. Jonathan G. Shaw, Division of Molecular and Genetic Medicine, F Floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK. e-mail: m.s.thomas@shef.ac.uk or j.g.shaw@shef.ac.uk

Received 12 April 2000; accepted 17 July 2000.

Gil Shalom, Jonathan G. Shaw and Mark S. Thomas

University of Sheffield Medical School
Sheffield, UK

3’ Overhangs Influence PCR-SSCP Patterns

BioTechniques 29:958-962 (November 2000)

Single strand conformation polymorphism (SSCP) analysis has become a popular method for detecting sequence variation in PCR-amplified DNA. It is a highly sensitive technique that is capable of detecting single-base substitutions under optimized conditions (3). DNA amplified by DNA polymerases, which lack 3’→5’ exonuclease (proofreading) activity, often has an additional nonterminal plate-directed nucleotide added at the 3’ ends (1). The addition of the extra nucleotide is variable, and the nucleotide added is dependent on the 3’ base existing at the blunt end (Table 1). Therefore, PCR products amplified by a DNA polymerase that exhibits extendase activity often consist of a mixture of blunt-ended DNA fragments and those with 3’ overhangs. The presence of these 3’ overhangs may affect the single strand conformation of PCR products and hence change the migration of bands on an SSCP gel. Furthermore, any factor that changes the addition of the 3’ extra nucleotides or causes degradation of the 3’ overhangs may alter the PCR-SSCP pattern. In this study, we tested the effect of the 3’ overhangs generated by Taq DNA polymerase (QIagen GmbH, Hilden, Germany) on SSCP banding patterns.

A fimbrial subunit gene (fimA) of Dichelobacter nodosus was amplified using the blunt end DNA polymerase, Pwo (Roche Molecular Biochemicals, Mannheim, Germany). After purification, half of the PCR product was treated with Taq DNA polymerase and then subjected to SSCP analysis. The PCR product treated with Taq DNA polymerase generated a different SSCP pattern from the untreated product (Figure 1a) and caused a reduction in the mobility of the slowest moving band. This mobility shift can be most clearly seen in Figure 1a, lane 2, where PCR products treated with and without Taq DNA polymerase were mixed and run together in the same lane. As Pwo DNA polymerase produces blunt-ended PCR products, the difference in migration pattern observed is thought to be the di-
rect result of a single 3' end extra nucleotide added by Taq DNA polymerase to a majority of the PCR products. Consistent with this result, the PCR-SSCP patterns of the fimA, amplified separately by Taq DNA polymerase and Pwo DNA polymerase, were also different. As expected, an extra SSCP band was observed with DNA fragment amplified by Taq DNA polymerase (Figure 1b). However, it is generally accepted that a proofreading polymerase such as Pwo DNA polymerase has a higher fidelity than a non-proofreading polymerase such as Taq DNA polymerase, and, therefore, the difference in banding pattern may simply be due to PCR errors made by Taq DNA polymerase.

The influence of the 3' overhang on ssDNA secondary structure was predicted by the mfold server (http://www.ibc.wustl.edu/~zuker/dna/forml.cgi). Both the sense and antisense strands of amplified fragments were analyzed. A minor change in the secondary structure of one strand was predicted with the addition of an extra A to the 3' end. This is consistent with the SSCP result because only one band showed a change in mobility.

Differences in fluorescence-based SSCP patterns have been observed when PCR products are treated with and without Klenow fragment (4). Klenow fragment has 3'→5' exonuclease activity for both ds and ssDNA. Treatment of PCR product with Klenow fragment not only removes 3' overhangs but also may result in recessed ends of the dsDNA fragments. Thus, the differences observed by Sugano et al. (4) may not only represent the effect of 3' overhangs on SSCP pattern. The production of recessed ends is time and enzyme activity dependent. In our experience, an excessive amount of enzyme or prolonged treatment can result in the complete degradation of the PCR product (data not shown).

This experiment has demonstrated that PCR-SSCP is able to detect a single-nucleotide addition to the 3' end of a small DNA fragment (200–300 bp). Sensitivity may be decreased for larger DNA fragments. Blunt-ended PCR products are therefore more appropriate for SSCP analysis. The generation of blunt-ended products by a DNA polymerase that does not exhibit exonuclease activity is preferable to the treatment of PCR products that have 3' overhangs with Klenow because the latter is both time consuming and the result is dependent on the conditions (i.e., time and enzyme activity) used.

REFERENCES

Canterbury, New Zealand Sequencing of \(\beta_2 \)-Adrenergic Receptor Gene PCR Products Using Taq BigDyeTM Terminator Chemistry Results in Inaccurate Base Calling

\textit{BioTechniques} 29:962-970 (November 2000)

Direct sequencing of PCR products is often used to identify point mutations in human genomic DNA and to genotype for studies aimed at evaluating the role of genetic polymorphisms in various diseases (2,4,6,7,9). The \(\beta_2 \)-adrenergic receptor (\(\beta_2 \text{-AR} \)) gene has three polymorphic point mutations located within a 126-bp span (9,12). Two of these mutations occur at \(\beta_2 \text{-AR} \) coding region nucleotide positions 46 (A or G) and 79 (C or G) resulting in amino acid substitutions at codons 16 (Arg or Gly) and 27 (Gln or Glu), respectively. The third mutation occurs upstream from the coding region at nucleotide -47 (C or T), resulting in either an Arg or Cys at codon 19 of the gene’s 5’ leader cistron (5’LC) region. Restriction fragment length polymorphism (RFLP) methods can be used to determine \(\beta_2 \text{-AR} \) genotypes at nucleotide positions -47 and 79; however, no restriction enzyme is currently available that recognizes one but not the other polymorphism at nucleotide 46. Given the close proximity of these polymorphisms, direct sequencing of a single PCR product seemed an efficient method for simultaneously genotyping the three polymorphic sites. We report our experience using PCR and direct sequencing to determine human \(\beta_2 \text{-AR} \) genotype at nucleotides -47, 46, and 79. Specifically, this paper describes the difficulty in accurately interpreting \(\beta_2 \text{-AR} \) genotypes with direct PCR cycle sequencing using the energy-transfer dichlororhodamine dye terminator chemistry.

Studies including genetic analysis were approved by the Investigational Review Boards at the University of Tennessee and the University of Florida, and each participant provided written informed consent for genetic analy-