Spin infection enables efficient gene delivery to muscle stem cells

Yusaku Kodaka1,2,3, Yoko Asakura1,2,3, and Atsushi Asakura1,2,3
1Stem Cell Institute, 2Paul and Sheila Wellstone Muscular Dystrophy Center, and 3Department of Neurology, University of Minnesota Medical School, Minneapolis, MN

Keywords: muscle stem cell; satellite cell; skeletal muscle; regeneration; retroviral vector

Viral vector–mediated foreign gene expression in cultured cells has been extensively used in stem cell studies to explore gene function. However, it is difficult to obtain high-quality stem cells and primary cells after viral vector infection. Here, we describe a new protocol for high-efficiency retroviral infection of primary muscle stem cell (satellite cell) cultures. We compared multiple commercially available transfection reagents to determine which was optimal for retroviral infections of primary myoblasts. Centrifugation force was also tested, and a spin infection protocol with centrifugation at 2800 g for 90 min had the highest infection efficiency for primary myoblasts. We confirmed that infected muscle stem cells maintain cell proliferation and the capacity for in vitro and in vivo myogenic differentiation. Our new, efficient retroviral infection protocol for muscle stem cells can be applied to molecular biology experiments as well as translational studies.

Skeletal muscle regeneration is mediated by muscle stem cells called satellite cells (1), which are normally mitotically quiescent in adult muscle. After muscle injury or exercise, quiescent satellite cells undergo activation, followed by proliferation. Proliferating satellite cells, which are myogenic precursor cells, eventually exit the cell cycle and fuse with each other to form multinucleated myotubes. Isolated satellite cells from skeletal muscle can be cultured in vitro as satellite cell–derived primary myoblasts (2,3). These primary myoblasts are used for in vitro models of skeletal muscle cell differentiation, self-renewal of satellite cells (4), in vivo satellite cell transplantation (5), and multi-lineage differentiation (6). As opposed to immortalized myoblast cell lines such as C2C12 cells, animal or human primary myoblasts can be utilized for cell transplantation as well as studies of stem cell biology (4,7).

One drawback of primary myoblasts is that they need more complex culture conditions to maintain their proliferation and differentiation abilities. The use of high serum conditions for cell growth is an example of this. Furthermore, the efficiency of DNA transfection and viral infection for primary myoblasts is lower than for C2C12 cells (8,9). Retroviral or lentiviral infection has been used for obtaining stable foreign gene expression that enables long-term experiments, including in vivo cell transplantation of myogenic cells (10–12). However, the viral supernatant normally contains low levels of nutrients and growth factors, which inevitably induces cell cycle exit followed by myogenic differentiation. Therefore, a method for high-efficiency viral infection without the need for culturing with the viral supernatant is critical for maintaining the ability of primary myoblasts to proliferate and differentiate (13).

For efficient retroviral infection, a spin infection protocol has been established for several cell types, including hematopoietic progenitor cells (14–17). To adapt the spin infection method to primary myoblasts, we identified optimal conditions for both transfection reagents and centrifugation time and force.

Materials and methods
Primary myoblast culture
All animal experimental protocols were approved by Institutional Animal Care and the Use Committee of the University of Minnesota. Satellite cell–derived primary myoblasts such as CD31(-), CD45(-), Sca-1(-), and integrin α7(+) cells were isolated from skeletal muscles of 2 month-old mice (C57BL6, Charles River Laboratories, Wilmington, MA) by MACS separation (Miltenyi Biotec, San Diego, CA) as described previously (3). Myoblasts were maintained on collagen-coated dishes in growth medium (GM) [Ham’s/F10 (Sigma-Aldrich, St., Louis, MO), 20% FBS, 20 ng/ml basic FGF (R&D Systems, Minneapolis, MN), and 1% penicillin/streptomycin (Invit...
Experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of the University of Minnesota for the care and use of laboratory animals. pMXs- or pMX-mCherry-infected myoblasts (1 × 10⁵) were used for engraftment in one tibialis anterior (TA) muscle of a Nod:Scid immunodeficient mouse (Charles River Laboratories). PBS injection was performed as the control. Two days before myoblast injection, 50 μl 2.5 mM cardiotoxin (CTX) (Sigma-Aldrich) was intramuscularly injected into the TA muscle to induce muscle injury. The TA muscle was harvested for histological analysis 1 or 3 months after cell injection. Frozen sections (8 μm) were prepared for engraftment analysis. Anti-laminin antibody (L0663; Sigma-Aldrich; RRID:AB_477153) followed by Alexa 488-conjugated anti-rabbit IgG (A-12062; Thermo Fisher Scientific; RRID:AB_2535792) and Alexa 568-conjugated anti-mouse IgG (A-12084; Thermo Fisher Scientific; RRID:AB_2534013) or Alexa 488-conjugated anti-mouse IgG (A-12020; Thermo Fisher Scientific; RRID:AB_141607) were used for immunostaining. Hematoxylin and eosin (HE) staining and Sirius red staining (Sigma-Aldrich) were also performed 1 month after cell injection. At that time, myofibers were isolated from mouse extensor digitorum longus muscle. Histological sections were stained with hematoxylin and eosin. Myofiber diameters were measured using ImageJ software.

Intramuscular injection of myoblasts

All animals were maintained inside a barrier facility, and all in vivo experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of the University of Minnesota for the care and use of laboratory animals. pMXs- or pMX-mCherry-infected myoblasts (1 × 10⁵) were used for engraftment in one tibialis anterior (TA) muscle of a Nod:Scid immunodeficient mouse (Charles River Laboratories). PBS injection was performed as the control. Two days before myoblast injection, 50 μl 2.5 mM cardiotoxin (CTX) (Sigma-Aldrich) was intramuscularly injected into the TA muscle to induce muscle injury. The TA muscle was harvested for histological analysis 1 or 3 months after cell injection. Frozen sections (8 μm) were prepared for engraftment analysis. Anti-laminin antibody (L0663; Sigma-Aldrich; RRID:AB_477153) followed by Alexa 488-conjugated anti-rabbit IgG (A-12062; Thermo Fisher Scientific; RRID:AB_2535792) and Alexa 568-conjugated anti-mouse IgG (A-12084; Thermo Fisher Scientific; RRID:AB_141607) were used for immunostaining. Hematoxylin and eosin (HE) staining and Sirius red staining (Sigma-Aldrich) were also performed 1 month after cell injection. At that time, myofibers were isolated from mouse extensor digitorum longus muscle. Histological sections were stained with hematoxylin and eosin. Myofiber diameters were measured using ImageJ software.

Intramuscular injection of myoblasts

All animals were maintained inside a barrier facility, and all in vivo experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of the University of Minnesota for the care and use of laboratory animals. pMXs- or pMX-mCherry-infected myoblasts (1 × 10⁵) were used for engraftment in one tibialis anterior (TA) muscle of a Nod:Scid immunodeficient mouse (Charles River Laboratories). PBS injection was performed as the control. Two days before myoblast injection, 50 μl 2.5 mM cardiotoxin (CTX) (Sigma-Aldrich) was intramuscularly injected into the TA muscle to induce muscle injury. The TA muscle was harvested for histological analysis 1 or 3 months after cell injection. Frozen sections (8 μm) were prepared for engraftment analysis. Anti-laminin antibody (L0663; Sigma-Aldrich; RRID:AB_477153) followed by Alexa 488-conjugated anti-rabbit IgG (A-12062; Thermo Fisher Scientific; RRID:AB_2535792) and Alexa 568-conjugated anti-mouse IgG (A-12084; Thermo Fisher Scientific; RRID:AB_141607) were used for immunostaining. Hematoxylin and eosin (HE) staining and Sirius red staining (Sigma-Aldrich) were also performed 1 month after cell injection. At that time, myofibers were isolated from mouse extensor digitorum longus muscle. Histological sections were stained with hematoxylin and eosin. Myofiber diameters were measured using ImageJ software.

Intramuscular injection of myoblasts

All animals were maintained inside a barrier facility, and all in vivo experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of the University of Minnesota for the care and use of laboratory animals. pMXs- or pMX-mCherry-infected myoblasts (1 × 10⁵) were used for engraftment in one tibialis anterior (TA) muscle of a Nod:Scid immunodeficient mouse (Charles River Laboratories). PBS injection was performed as the control. Two days before myoblast injection, 50 μl 2.5 mM cardiotoxin (CTX) (Sigma-Aldrich) was intramuscularly injected into the TA muscle to induce muscle injury. The TA muscle was harvested for histological analysis 1 or 3 months after cell injection. Frozen sections (8 μm) were prepared for engraftment analysis. Anti-laminin antibody (L0663; Sigma-Aldrich; RRID:AB_477153) followed by Alexa 488-conjugated anti-rabbit IgG (A-12062; Thermo Fisher Scientific; RRID:AB_2535792) and Alexa 568-conjugated anti-mouse IgG (A-12084; Thermo Fisher Scientific; RRID:AB_141607) were used for immunostaining. Hematoxylin and eosin (HE) staining and Sirius red staining (Sigma-Aldrich) were also performed 1 month after cell injection. At that time, myofibers were isolated from mouse extensor digitorum longus muscle. Histological sections were stained with hematoxylin and eosin. Myofiber diameters were measured using ImageJ software.
ferred into DMEM, and triturated to release single myofibers. Single muscle fibers were immunostained with anti-Pax7 antibody (Pax7; Developmental Study Hybridoma Bank; RRID:AB_528428) followed by Alexa 488-conjugated anti-mouse IgG (A-21202; Thermo Fisher Scientific; RRID:AB_141607). DAPI was used for counterstaining of nuclei.

Statistics
Data are presented as mean ± SEM. Statistical comparisons were performed using an unpaired two-tailed Student’s t test or ANOVA with Scheffe’s test with \(P < 0.05 \) as the threshold for statistical significance.

Results and discussion
Transfection reagents for retroviral infection of primary myoblasts
For retroviral infection, a high titer is important for efficient expression of the ectopic gene. We first examined several commercially available transfection reagents for transfection into Plat-E virus packaging cells, which are superior to 293T cells. We transfected cells with a pMX-GFP plasmid vector using Lipofectamine, Lipofectamine 2000, Lipofectamine LTX, TransIT-293, TransIT-2020, TransIT-LT1, PolyJet, or LipoJet. Two days after transfection, all transfection reagents allowed Plat-E cells to express GFP (Figure 1A). Lipofectamine and TransIT-293 showed lower transfection efficiencies than the other reagents. After plating infection of primary myoblasts with these retroviral supernatants, the infection efficiencies quantified by GFP-positive cells were quite different. TransIT-2020 (47.33 ± 3.62%), PolyJet (44.32 ± 6.12%), and LipoJet (45.53 ± 4.76%) displayed relatively higher infection efficiencies compared to the other reagents (Figure 1, A and B). Among those three reagents, we chose PolyJet as the transfection reagent for subsequent spin infection experiments due to its cost effectiveness.

We also compared 2 different ratios of the amounts of pMX-GFP DNA to PolyJet, 1:1 and 1:2, for the transfection step and found no significant difference in transfection efficiency (Supplementary Figure S1).

Spin infection of primary myoblasts
We tested infection of primary myoblasts using retroviral supernatants by spin infection at \(2800 \times g \) for different time periods (30, 60, 90 and 120 min). First, we trypsinized primary myoblasts to obtain small cell pellets, enabling cells to be incubated with a small volume of retroviral supernatant. Two days after plating, spin...
myoblasts are less stable and lose their myogenic differentiation compared with myoblast cell lines such as C2C12 cells. For spin infection, we concluded that spin infection at 2800 × g for 90 min is the most effective method for infecting primary myoblasts. However, the dead cells in each condition were still less than 10% of the total primary myoblasts (Figure 2B). When using half of the viral supernatant concentration was used, the infection efficiency was reduced (63.93 ± 6.45%) (Figure 2B). When using half of the number of primary myoblasts, cells highly expressing GFP (GFP$^{+}$) were increased (24.91 ± 0.53%) compared with all of the cells (16.22 ± 2.72%) (Figure 2B), indicating that each primary myoblast was infected with more copies of the retrovirus. We also counted dead cells using trypan blue staining. The number of dead cells was increased when higher relative centrifugal forces (RCFs) were used for spin infection. However, the dead cells in each condition were still less than 10% of the total primary myoblasts (Figure 2B).

Next, we tested spin infection conditions with 3 different RCFs (200, 2800, and 9000 × g) for 90 min. Two days after spin infection, we found that the 2800 × g RCF showed the highest efficiency (47.94 ± 4.39%) (Figure 2, A and B). When a lower viral supernatant concentration was used, the infection efficiency was reduced (63.93 ± 6.45%) (Figure 2B). When using half of the number of primary myoblasts, cells highly expressing GFP (GFP$^{+}$) were increased (24.91 ± 0.53%) compared with all of the cells (16.22 ± 2.72%) (Figure 2B), indicating that each primary myoblast was infected with more copies of the retrovirus. We also counted dead cells using trypan blue staining. The number of dead cells was increased when higher relative centrifugal forces (RCFs) were used for spin infection. However, the dead cells in each condition were still less than 10% of the total primary myoblasts (Figure 2B).

Characterization of infected primary myoblasts
Compared with myoblast cell lines such as C2C12 cells, primary myoblasts are less stable and lose their myogenic differentiation capability easily. Following spin infection at 2800 × g for 90 min, we noticed that the number of EdU-positive or pHisH3-positive proliferating primary myoblasts was increased, while the number of myosin heavy chain (MHC)–positive differentiating myocytes was decreased compared with adherent (plating) infection (Figure 3, A and B; Supplementary Figure S2, A and B). We confirmed, however, that myogenin-positive myotube formation by the primary myoblasts was still maintained following spin infection at 2800 × g for 90 min (Figure 3, A and C). Next, following plating or spin infection at 2800 × g for 90 min, we attempted intramuscular transplantation of the infected primary myoblasts into cardiotoxin (CTX)-induced regenerating TA muscle of NOD/Scid immunodeficient mice. One month after cell injection, more mCherry-positive muscle fibers were detected after injection with spin-infected primary myoblasts compared with plating-infected primary myoblasts. HE and Sirius red staining showed no differences in histological morphology and fibrosis between regenerating muscle injected with PBS, plating-infected primary myoblasts, or spin-infected primary myoblasts. Three months after cell injection, mCherry-positive muscle fibers were still detected (Figure 4, A and B). In both injected groups, Pax7-positive satellite cells were detected in isolated single myofibers from the recipient mice (Figure 4C). These results indicate that spin-infected primary myoblasts display better engraftment and myogenic differentiation following intramuscular injection.

Here, we demonstrated high-efficiency retroviral infection into primary myoblasts using spin infection with high-speed centrifugation. These spin-infected primary myoblasts showed better cell proliferation in GM and underwent proper myogenic differentiation in DM. Furthermore, these spin-infected primary myoblasts could engraft into regenerating muscle fibers after intramuscular injection more efficiently than plating-infected myoblasts or Pax7-positive satellite cells. We also identified effective transfection reagents for the production of retroviral supernatant used for infection of primary myoblasts. High efficiency of retroviral infection is crucial for primary myoblasts since primary myoblasts are a heterogeneous population; therefore, selective infections may not be representative of the overall population. Unlike myoblast cell lines such as C2C12 cells, primary myoblasts sometimes lose their myogenic differentiation capacity. However, our data clearly showed that the spin infection method does not affect the myogenic differentiation capability of primary myoblasts, meaning it is suitable for use in regenerative medicine.

Previous experiments using spin infection with adherent cells were performed using multi-well plates with retroviral supernatants (9). However, our spin infection method was performed in microcentrifuge tubes with small cell pellets after trypsinizing cells from the plates, in the same way as non-adherent cells. This new method has advantages since relatively large numbers of cells can be infected with a reduced volume of retroviral supernatants and, thus, lower amounts of viral vector DNA, transfection reagents, and viral producing cells are needed. Taken together, our spin infection method can enable efficient viral vector–mediated gene expression, not only in primary myoblasts but also in many adherent and non-adherent cell types.

Author contributions
Y.K. and Y.A. performed the experiments, gathered data, and wrote the manuscript. A.A. created the figures and wrote the manuscript.
A NEW STANDARD IN RNA ISOLATION

RNAzol® **RT**

Isolates total RNA, with mRNA and small RNA (200-10 bases) in separate fraction

- The single-step method without phase separation
- No DNase treatment necessary
- RNA ready for RT-PCR, microarrays and other applications
- No need for refrigerated centrifuge
- One reagent for solid and liquid samples

www.mrgene.com (888) 841-0900

© Piotr Chomczynski, US patent 2010

THE HIGHEST YIELD AND PURITY:

TOTAL RNA

SMALL RNA

To purchase reprints of this article, contact: biotechniques@fosterprinting.com

Acknowledgments
We thank Conor Burke-Smith for critical reading. This work was supported by the NIH R01 (1R01AR062142) and NIH R21 (1R21AR070319). This paper is subject to the NIH Public Access Policy.

Competing interests
The authors declare no competing interests.

References

Received 24 June 2016; accepted 28 June 2017.

Address correspondence to Atsushi Asakura, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, Room 4-220, 2001 6th Street SE, Mail Code 2873, Minneapolis, Minnesota, 55455. E-mail: asakura@umn.edu