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The goal of bioimaging has always been to capture the maximum amount of information about a
biological process, with the minimum amount of interference. To achieve this goal there are two key
aspects that need to be operating well: imaging instrumentation, to capture high-resolution images in a
minimally invasive manner; and the image analysis methods, to extract as much information as
possible. When working in tandem, these techniques can act as a powerful tool for therapeutic
development and the advancement of personalized medicine.

However, the pursuit of more accurate models for disease and basic biology has led to more complex,
3D subjects for image capture and the need to capture processes real-time in live cells has driven the
instrumentation to become more sophisticated. These systems are capable of delivering highly
complex, detailed images that require cutting-edge analysis models to mine the maximum information
from each biological sample being evaluated.

This eBook rounds up some of the key features from our recent Spotlight on bioimaging and analysis,
examining the impact of deep learning on bioimage analysis and how AI has changed the drug
discovery space, before revealing some of the key trends in bioimage acquisition and analysis. 

Discover the opportunities that cutting-edge live-cell imaging technologies have opened into the
exploration of cell subsets, heterogeneity and morphology.
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Tristan Free 
Senior Editor, 
BioTechniques
tfree@biotechniques.com

 www.biotechniques.com



3D images of vasculature systems can now be achieved using a combination of two contrast agents,
allowing researchers to perform multiscale imaging of blood vessels.  

VascuViz: a novel method to uncover the
secrets of blood vessels

News
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Researchers at Johns Hopkins Medicine (MD, USA)
have developed a novel imaging agent for blood
vessels, referred to as ’VascuViz’, which is compatible
with several imaging techniques, unlike current more
restrictive methods. This uses a quick-setting polymer
mixture to fill blood vessels prior to imaging and allows
researchers to visualize one sample at different scales.
  
Often researchers will use techniques such as MRI, CT
scans or microscopy to capture images of blood
vessels and study them. However, different imaging
agents are needed to make blood vessels visible for
each of these techniques and can often make them
invisible to other imaging methods, presenting
difficulties for observing macro- and microvasculature
structures simultaneously.  

“Usually, if you want to gather data on blood vessels in
a given tissue and combine it with all of its surrounding
context like the structure and the types of cells
growing there, you have to re-label the tissue several
times, acquire multiple images and piece together the
complementary information,” explained Arvind Pathak,
who leads this research group. “This can be an
expensive and time-consuming process that risks
destroying the tissue’s architecture, precluding our
ability to use the combined information in novel ways.”

The research group hopes that VascuViz will
accelerate imaging-based research as it enables
researchers to collect more data from a single sample
by using one imaging agent that is applicable to a
variety of techniques.   

“Now, rather than using an approximation, we can
more precisely estimate features like blood flow in
actual blood vessels and combine it with
complementary information, such as cell density,” said
Akanksha Bhargava, the lead author on this paper.  

Bhargava A, Monteagudo B, Kushwaha P, et al.
VascuViz: a multimodality and multiscale imaging
and visualization pipeline for vascular systems
biology. Nat. Methods 19, 242–254 (2022).

Bhargava looked at many combinations of imaging
agents that are currently used and tested them with
different imaging techniques. Bhargava found that
combining a CT contrast agent and a fluorescently
labeled MRI contrast agent (BriteVu and Galbumin-
Rhodamine) would be suitable for several optical-
imaging techniques and make the macro- and
microvascular structures visible at the same time. 

As VascuViz was successful in test tubes, the research
group tested it in different mouse tissues, such as the
vascular system of breast-cancer models and kidney
tissues. 3D visualizations of the vasculature structure
of these were created by combining the images
collected using MRI and CT scans and optical
microscopy. This approach can be combined with
mathematical models or images of other tissue
elements to understand diseases with abnormal blood
flow, such as cancer and stroke.  

VascuViz is especially useful for generating
computerized visualizations of complex biological
systems, for example the circulatory system, and is a
new tool in the growing field of 'image-based' vascular
systems biology. The researchers hope this will
improve understanding of the structure of tissue
dynamics and their response to drug treatments. 

Source
1.

https://www.hopkinsmedicine.org/
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We recently spoke to Beth Cimini (right), an analyst at the Broad Institute of
MIT and Harvard (MA, USA), about her role at the institute and how bioimage
analysis has evolved in recent years due to COVID-19 and the application of
deep learning.

Bioimage analysis: has deep learning
changed the game?

Interview
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Bringing together researchers and labs from both
Harvard and MIT, the Broad Institute is a not-for-profit
research center, which was initially developed for
genomic medicine and has since expanded across
many disciplines of biomedical research. Nearly 20
years on from its inception, the Broad Institute focuses
on doing biology at scale; for example, the institute
currently performs around 1 in 30 COVID tests in the
United States. Cimini is part of the imaging platform
team, and develops open-access image analysis
software using deep learning to streamline analysis
leading to better and faster answers to biological
questions.

The imaging platform contains two labs working on
this mission. The first, led by Anne Carpenter and
Shantanu Singh, is focused on turning the data
gathered from images into answers to scientific
questions using deep learning and informatics. The
second lab, which Cimini leads, is focused on making
image analysis easier, leading to quicker and more
expansive image analysis. One function of the lab is to
maintain the Cell Profiler and Cell Profiler Analyst tools,
which were created by Carpenter and are freely
available tools that streamline bioimage analysis.

“You shouldn’t need to know how to do [coding] in
order to do good microscopy and good image analysis”

When a researcher has an image to analyze, the first
step is to upload it onto an image analysis program
such as ImageJ or Fiji and explore the thresholding
and filtering options to produce the best quality
images for analysis. But what happens when a
researcher has 5000 images they’d like to analyze? 

Well, currently, they’d need to learn how to code. As
Cimini pointed out, “you shouldn’t need to know how to
do [coding] in order to do good microscopy and good
image analysis”. Some people wouldn’t know where to
begin, and many of us just don’t have the time to
commit to mastering this skill, and that’s where Cell
Profiler comes into play.

Cell Profiler allows you to string together a ‘pipeline’ of
different image analysis steps called ‘modules’ without
getting anywhere close to a line of code. This could
mean taking measurements, finding objects, smoothing
an image or highlighting the edge of the nucleus – or
all the above. Once you have created a pipeline using
Cell Profiler all you need to do is upload the whole set
of images into the program and the rest is done for
you.

Cell Profiler is a powerful program with between 900
and 950 different image analysis settings; however, a
powerful program like this doesn’t come without a
trade-off, as is often the case. Cimini recognizes that
the program could initially come across as
overwhelming and appreciates that this may be one of
the largest challenges faced by users of Cell Profiler. “I
was a Cell Profiler before I worked on the program, so I
know how challenging it can be,” Cimini explained.
However, to combat this the team has developed a
thorough guide along with video tutorials to help
researchers use this tool.

“I was a Cell Profiler before I worked on the program, so
I know how challenging it can be.”

While Cell Profiler allows faster analysis of cells and 

https://www.broadinstitute.org/
https://cellprofiler.org/
https://cellprofileranalyst.org/
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turning images into data, Cell Profiler Analyst enables
researchers to take this data set and turn it into
tangible answers to questions. For instance, if a
researcher measured the cell area in 100 images
using Cell Profiler, they would then be able to use Cell
Profiler Analyst to visualize this data. Cimini put it
nicely, “Cell Profiler gets you the important numbers
and then Cell Profiler Analyst allows you to explore
that data to answer your questions.”

These are powerful tools that are freely available to all
researchers, something the Broad Institute feels is
essential for a number of reasons. The first is that
sometimes there are cases when a researcher wishes
to use the Cell Profiler platform to do something that
is not currently available on the program. As the code
is open-source, updates can be suggested to the
team at the Broad, which means the tool doesn’t
remain stagnant and the technology continues to
develop. The second is ensuring that researchers in
countries with fewer resources don’t have to pay for
expensive software licensing, which is not only good
for accessibility but will also accelerate the
advancement of scientific research.

“We think it makes science move a lot faster and it is
a lot fairer”

Open-source image analysis and tools such as Cell
Profiler and Cell Profiler Analyst have exploded
recently, which Cimini agreed could be down to
COVID. She observed that when researchers were
forced out of the labs and into their homes, they were
finding the time to dig out the data they had been
meaning to analyze, and the Broad was able to put
time and energy into teaching people how to use their
tools through webinars and office hours.

But, Cimini thinks the recent advancements in image
analysis software itself were down to something else
entirely.

When Cimini first joined the Broad Institute in 2016,
the idea that deep learning could be used in
bioimaging was one the team believed possible;
however, the sticking point was gathering enough
data to train the models.

Neural networks are trained by data sets that contain
labels. For example, if you are training a neural
network to recognize a bus or a plane in an image,
you would train it with a data set of pictures labeled
either as ’bus’ or ’plane’. Each picture would then run
through the neural network, which would decide if the
picture was more likely to contain a bus or a plane. At
this point, the label on the picture would tell the
model if it was right or wrong. The model gets smarter
by prioritizing the route through the neural network
that results in the best predictions of what an image
contains. So, if the goal is to train a neural network to
isolate more specific features such as nuclei in
squamous endothelial cells, a data set with these
features and corresponding labels are required.

Industry leaders in deep learning and artificial
intelligence, such as Facebook, had enormous data
sets created by millions of people tagging their
friend’s faces for years that could be used to train
neural networks. So, for deep learning to be applied to
bioimaging, relevant data sets need to be created to
train the computer models.

Currently, Cell Profiler doesn’t have its own
component of deep learning but can incorporate deep
learning networks and data sets such as Cellpose and
StarDist. As data sets improve, Cimini and the team at
Broad Institute hope their tool can come with a neural
network that works straight out of the box rather than
with the complicated settings and extra plug-ins
required now. Currently, Cimini spends time helping
researchers understand how to pick the best
thresholding algorithm for their work, which she
thinks will eventually become redundant, as the tool
will be able to do this itself. This will allow more time 

 www.biotechniques.com
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for the group to work with biologists to help them
make Cell Profiler pipelines or create more open-
source image analysis tools and workflows.

While deep learning is, as Cimini describes,
“undoubtedly valuable” it does not come without
limitations. There is no understanding of how a neural
network makes certain decisions, which Cimini
explained using the example of a deep learning
algorithm trained to classify handwritten numbers.
Once sorted and classified, Cimini filtered the results
to show only the elements of the dataset that the
algorithm had assigned as a three. While most of the
results were a three, there were a few twos and an
eight. “When mistakes are made it’s hard to know why
and it is hard to know how to fix them,” says Cimini,
and often, the only option is to continue training the
network. For this reason, Cimini doesn’t believe that
deep learning tools will become the be-all and end-all
of bioimage analysis but there is no doubt it will
continue to develop further.

When asked what makes working on the Cell Profiler
and Cell Profiler Analyst technology so rewarding,
Cimini revealed that Cell Profiler is cited in over a
thousand papers a year, meaning that there are “at
least a thousand people a year who might not have
been able to get an answer before.” Cimini adds that,
“there is a little piece of science that couldn’t be done
and now can”. For example, Cell Profiler has been
used to pick which therapeutic drugs would be best
suited to patients with leukemia or lymphoma. The
interface was able to predict which drugs would work
best for a patient and made better judgments about
treatment plans than a doctor alone, increasing the
life expectancy of patients with cancer. “When you
have a huge impact on somebody’s life, that is great,
but having thousands of tiny impacts on people’s
lives is also really rewarding.”

As deep learning becomes more incorporated into
bioimage analysis programs, like Cell Profiler and Cell
Profiler Analyst, the speed at which data can be
sorted and analyzed will lead to faster science
dissemination. While these tools may look daunting at
first, those developing and maintaining them have
created a range of informative materials and enjoy
assisting researchers to find answers to a scientific
questions within their images.
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Artificial intelligence (AI) has become more common, both in our research
labs and in our homes, but what are the limitations of AI? 

We turn to Anne Carpenter (Broad Institute; MA, USA), Wengong Jin (Eric
and Wendy Schmidt Center; MA, USA), and Jürgen Bajorath (University of
Bonn; Germany) to answer our questions about developing computational
techniques for drug discovery, the challenges of doing so, and how this
technology might evolve in the future.

What is the difference between AI, machine learning and deep learning? ................... 

In what ways can AI be used to accelerate drug discovery?.............................................

What have been some significant advancements or successes of AI in drug

discovery?........................................................................................................................................

How is AI being used within your own research?.................................................................

What do you think is a common misconception about using AI in drug discovery?...

What are the challenges of developing AI for drug discovery?.........................................

What are the current limitations of using AI in drug discovery?.......................................

How do you think AI will evolve in the next decade to accelerate drug discovery?...

Meet the Experts...........................................................................................................................
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What is the difference between AI, machine learning and
deep learning?

Anne Carpenter
These terms can be confusing because some envelop the others, and some have both
a technical meaning and an everyday meaning. Simply speaking, in machine learning
(ML) you aim to teach a computer to answer questions correctly by providing it with
examples (either examples with the correct answers, in supervised learning, or just
examples of the data in unsupervised learning). The computer aims to discover general
rules rather than just memorizing answers. ML can be trained to answer questions like,
“Where are the nuclei in this image?” or “Where are the transcription factor binding sites
in this genome sequence?” or “What groups of similar samples exist in this dataset?”

To understand deep learning (DL), it helps to know that in most ML applications to date,
specific features were extracted intentionally from the data in the hopes that those
features would make it easier for the computer to learn correct answers. For example,
we design features in images relating to the texture, shape, and size of cytoplasmic
staining to try to detect whether a cell is metastatic or not.

However, DL is a type of ML where instead, you feed the raw data to the computer,
usually in huge quantities, and let it sort out how to best extract features from the data
in order to make its decisions. The decision-making system has many internal layers,
which sparked the name 'deep' learning. In my metastatic cell example, we would just
give the system the raw image pixel data and let the system figure out how to
distinguish metastatic cells by giving it many examples.

Now, AI: some use the term artificial intelligence to refer to any computer system that
can make good decisions, whereas others use it to refer just to a branch of ML where
the computer is forced to understand how it can learn generally, rather than being
trained just for a specific task.

Jürgen Bajorath
ML is a sub-discipline of AI and DL uses deep neural network (DNN) architectures and is
a sub-discipline of ML.
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In what ways can AI be used to accelerate drug
discovery?

3
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Anne Carpenter
This is such an exciting time to be working at the interface of computer science and
drug discovery because there are so many applications! Many individual steps of drug
discovery can be accelerated using AI. 

For example, you can train systems to predict a given compound’s activity in an assay
based on its chemical structure or other pre-existing information about the compound.
You can train a system to sift through millions of images of cells treated with
compounds to identify a favorable phenotype. You can predict the structure of a
protein involved in a disease so that compounds can be designed to fit into them
better. You can even test millions of chemical structures virtually to assess how they
bind with the protein. Systems for these and many more tasks are not perfect, but they
can assist experts in making better and faster decisions.

Wengong Jin
Molecular screening is a crucial step in drug discovery, where a chemist puts a library of
existing compounds into a biological assay to measure their biological properties, such
as potency, toxicity and solubility. The number of chemicals that could be potential
drug candidates is estimated to be at least 10   – these are all the molecules that obey
Lipinski’s rule-of-five for oral bioavailability – creating a major bottleneck in screening
for drug candidates.

Standard high-throughput screening facilities in the pharmaceutical industry can only
test around 10 compounds per day. It is, therefore, crucial to restrict the size of
compound libraries to make the screening time and associated costs feasible. We seek
to accelerate and automate drug discovery using AI. 

Previous screening efforts in the pharmaceutical industry have generated many
datasets of molecules with labeled properties. This allows us to build molecular property
models that can predict the properties of a compound without testing it in a wet lab. We
can then use these models to virtually screen a much larger collection of molecules at a
much faster speed (10  compounds/day) than is possible with current high-throughput
screening facilities in a wet lab.

8



Jürgen Bajorath
The hope is that AI approaches will further expand the currently charted
chemical/target space and accelerate discovery paths from targets and novel chemical
entities to drug candidates. 

AI enterprises engaged in drug discovery already claim such accomplishments on a
case-by-case basis. However, a word of caution is advisable since there is typically a
gap between claims, promotional efforts (for example, for fundraising), and the
scientific reality when it comes to pushing ‘new’ technologies in drug discovery. In this
context, it should be noted that ML has a long history in pharmaceutical research and
that DL represents an extension of this framework, rather than a truly novel approach.

What have been some significant advancements or
successes of AI in drug discovery?

Anne Carpenter
I serve on the scientific advisory board of a company called Recursion, which uses ML
to identify changes in cell morphology that occur when genes associated with
disorders are perturbed. The team then screen compounds to identify those that could
reverse disease-associated changes. Using computers to analyze images makes these
decisions fast and objective. They now have four candidate therapeutics entering
clinical trials!

Wengong Jin
In 2020, whilst I was at MIT (MA, USA), we successfully used AI to discover a new
antibiotic called Halicin. We did this by training a DNN to become capable of predicting
molecules with antibacterial activity. We performed predictions on multiple chemical
libraries and discovered Halicin, a compound that is structurally divergent from
conventional antibiotics and displays bactericidal activity against a wide spectrum of
pathogens including Mycobacterium tuberculosis and carbapenem-resistant
Enterobacteriaceae. 

Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter
baumannii infections in mice. This work highlights the utility of DL approaches to
expand our antibiotic arsenal through the discovery of structurally distinct antibacterial
molecules. This discovery was published in Cell and received significant attention
because there is an urgent need to discover new antibiotics due to the rapid
emergence of antibiotic-resistant bacteria.
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Jürgen Bajorath
Currently, AI in drug discovery mostly refers to DL and robotics, while the adaptation of
other AI sub-disciplines is still at very early stages. One of the areas where DL has
recently made a substantial impact is in computer-aided synthesis planning and
prediction, at least at the methodological level. However, many medicinal chemists
attest to the fact that these DL-driven advances are yet to be made practically
applicable in their day-to-day efforts, aside from raising awareness of what this
technology can do. Time and substantial efforts will be required until AI/DL tools
measurably impact the practice of drug discovery on a larger scale.

Anne Carpenter 
We are teaching the computer to see things that humans cannot see in images. For
example, by eye, humans cannot distinguish cells with a certain type of leukemia from
those without, so biomarkers were developed that could be detected by fluorescence
flow cytometry. We recently used DL to teach the computer to identify those leukemic
cells based on just unstained microscopy images, without any biomarker labels, and it
succeeded!

Wengong Jin 
I am currently using AI to search for synergistic drug combinations to treat COVID-19.
Drug combinations make promising therapeutic candidates for COVID-19, but the lack
of high-quality training data makes it difficult for DL to predict drug synergy accurately. 

To address this challenge, I proposed a novel DL model called ComboNet, which jointly
models drug-target interaction and drug synergy. Together with the National Center for
Advancing Translational Sciences (MA, USA), we discovered two novel drug
combinations (remdesivir and reserpine; remdesivir and IQ-1S) with strong synergy. This
work was published in PNAS in 2021 and we are currently applying this model to find
effective drug combinations for pancreatic cancer.

Jürgen Bajorath
Our research largely focuses on computer-aided medicinal chemistry and
chemoinformatics.  Like other groups in this area, we have been using ML for molecular
property predictions and other applications for many years. Furthermore, we have also
developed ML approaches for a number of specific tasks such as predicting activity
cliffs (structurally similar compounds that are active against the same target but with
large differences in potency) or compound-target screening matrices.

5

How is AI being used within your own research?



In recent years, I have become increasingly interested in better understanding ML
predictions, their successes, and failures (or, in more colorful terms, shedding light on
the ‘black box’ of ML, when even the designers of a computer model cannot explain
how a certain decision is made). This is also referred to as ‘explainable AI’ (XAI). 

XAI refers to methods that allows humans to comprehend the results outputted by ML
algorithms. Notably, one of the attractions of DL is that DNNs enable us to tackle
problems that are difficult, if not impossible, to address using standard ML approaches
such as molecular image-based predictions or chemical representation learning. This is
another major driver for increasingly investigating DL in our research environment.
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What do you think is a common misconception about
using AI in drug discovery?

Jürgen Bajorath
Firstly, it is often not sufficiently understood what AI is – and what it is not. We are still
far away from a situation where computers make autonomous decisions beyond
human reasoning, at least in pharmaceutical research. DL is data-driven, statistical in
nature, and far from being some form of ‘magic’ for unsolved problems in drug
discovery, such as high attrition rates. 

Secondly, high expectations that AI might ‘revolutionize’ the drug discovery process are
on rather fragile grounds. No single scientific approach or technology has ever come
close to revolutionizing drug discovery and there are good reasons to anticipate that
this will also apply to AI. Hence, in light of the drug discovery history, arriving at a better
general understanding of current AI approaches, their opportunities and limitations,
would be beneficial for pharma environments and help to avoid unrealistic
expectations.

Anne Carpenter
It’s fairly easy to achieve successful results for a supervised ML problem if you try
enough parameters or architectures and test it on only a small sample that is very
similar to what you’ve it trained on. The challenge is to create something that works
reliably in the real world, and that takes a serious investment in creating the training
and testing data to be sure that you are not fooling yourself with a system that has just
memorized the correct answers for a small dataset.

What are the challenges of developing AI for drug
discovery?
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What are some of the current limitations of using AI in
drug discovery?

Anne Carpenter
One of the biggest challenges I see is in predicting the toxicity of compounds. Solving
this problem would have a HUGE impact on the pharmaceutical industry but it’s very
challenging to design AI solutions for it. For example, if I invented a new AI-based tool
that could tell you whether a given chemical structure would be toxic to humans, how
could I prove it works? We can’t give lots of different compounds to humans outside of
clinical trials, and there are very few trials of new compounds each year to validate my
system.

Wengong Jin
The major challenge of developing AI for drug discovery is data scarcity and bias, as
training data is usually limited in molecular property prediction, or is otherwise biased.
Additionally, molecular assays used for learning property predictors involve many
sources of spurious correlations, as a result of the choice of chemical libraries, batch
effects, or measurement biases, for example. Therefore, effective molecular property
prediction requires that models generalize beyond the chemical space of training
examples and avoid learning spurious correlations introduced by these biases. 

It is also challenging to design proper evaluation protocols to measure the
generalization power of a method when applied to a new chemical space, as is common
in drug discovery.

Jürgen Bajorath
Unlike other fields where AI/DL has made a strong impact, drug discovery is overall not
a data-rich discipline. The use of limited amounts of mostly structured data does not
play into the strengths of ‘data-hungry’ DL approaches. Consequently, consistent
improvements of DL predictions over other ML approaches are not expected across
typical applications such as compound activity or property predictions and are currently
not observed.

In drug discovery settings, it will be important to identify applications where DL is most
likely to outperform standard ML approaches (for example, image-based analysis of
high-content assays) and concentrate on novel applications that are essentially
enabled through DL (such as advanced synthesis design). In addition to data
constraints, it should also be taken into consideration that drug discovery is a highly
interdisciplinary process with intrinsic scientific heterogeneity, making it rather unlikely
that ‘one-size-fits-all’ AI systems will be easy to conceptualize and implement.



I could train my system to predict the outcomes of toxicity testing on animals, but we
know that animal results are not entirely consistent with human results (although are
better than nothing). We could test the system against past clinical trials, but most likely
that is the data I used to train my system, so it might have just memorized the right
answers. So, the very small dataset of human toxicity data is a major challenge.

Jürgen Bajorath
In addition to general limitations resulting from data sparseness, the black box
character of AI/DL is another important issue. Drug discovery practitioners are typically
reluctant to rely on predictions that cannot be understood in chemical or biological
terms, which works against the acceptance of black box approaches for practical
applications. This emphasizes the need for XAI methods to rationalize predictions and
communicate them in an intuitive manner.

Since operating in discovery project teams typically requires multi-tasking and working
under time pressure, ease-of-use and robustness of new computational methods and
tools are essential for using them in practical applications and for making progress.
While developing consistently accurate predictive models is a formidable challenge,
transforming expert domain models into widely accessible tools presents another
challenge of similar magnitude.
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How do you think AI will evolve in the next decade to
accelerate drug discovery?

Anne Carpenter
ML will be incorporated more seriously at each step in the pipeline, providing assistance
to experts and making their work more efficient. On top of this, I imagine we will see
improvements in generative ML systems. So, instead of telling you whether a proposed
compound is likely to be effective, this can instead generate a structure from scratch
that is predicted to have properties of interest, and even generate a proposed 'recipe'
for how to synthesize the compound. The real-world testing of compounds in biological
systems will always be a bottleneck and an important step in the process, but it’s
exciting to see how much acceleration we can get from computational predictions.

Wengong Jin
I think AI will be applied to a much broader range of biological applications like
structural biology, immunology, gene therapy and drug delivery. Therapeutic
development in these areas has been hindered by the enormous time and cost
associated with experimental processes. AI-based therapeutic design may become the
next-generation technology in these fields. 



For example, the success of gene therapy or cancer drugs depends on the efficiency
and selectivity of nanoparticles in delivering the drug to desired cell types. We can
enhance drug delivery technologies by building neural networks to predict the
efficiency and selectivity of nanoparticles and generating new vectors with optimal
efficiency and selectivity via generative models.

Jürgen Bajorath
For the reasons discussed above, I do not anticipate ‘revolutionary’ AI-driven
developments in drug discovery and design over the next years. Provocatively put,
making better drugs through AI probably is an elusive goal for the next decade, given
that the discovery process is multi-factorial and much too complex and time-
consuming for a single technology to be a game-changer.

Instead, incremental advances in early-phase discovery such as in synthesis prediction,
targeted compound design, or in vivo drug property predictions are expected and will
certainly be helpful. However, for AI/DL to mature in discovery settings, there is an
urgent need for more prospective applications (that is, demonstrating what has been
accomplished, rather than what could be done). This will primarily depend on the
confidence of drug discovery investigators to translate predictions into experiments.

Practical applications in high-profile discovery projects will be essential for establishing
AI within the drug discovery spectrum and increasing its acceptance among
experimentalists. It is also anticipated that further progress will be made in integrating
predictive modeling with robotics in lab automation. Although this might not always
require rocket science, the potential impact of such efforts should not be
underestimated, especially if they lead to substantial reductions in the workload
required for standard procedures in chemical labs, biological screening, or in the scale-
up of experiments.

Last but not least, going beyond DL, it will also be very interesting to see a more
extensive deployment of other AI methods and tools such as recommender systems
that have the potential to impact the practice of drug discovery.

9
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Introduction

The morphology of a cell contains vast amounts of information on cell health and differentiation state, and yields insight into 
cell phenotype. Biologists use this information daily to drive decisions around cell culture conditions and responses during 
assay development. Traditionally this important information has been described qualitatively or via the use of single metrics as 
a surrogate for total cell shape. However, these methods are subjective evaluations and can lead to loss of data and a lack of 
robustness and reproducibility within cell-based assays.

Objective quantification of morphology enables researchers to make data-driven decisions for successful cell culture 
propagation and experimentation. Morphological data can be used as a kinetic readout to determine compound effects—
for example, counting the number of cells with viable versus apoptotic morphology yields a direct measure of cytotoxicity. 
Furthermore, using label-free image analysis to derive these measurements has the advantage of being completely non-
perturbing to cell cultures, ensuring that the data generated is not an artifact of the detection method. This can be vital when 
using highly sensitive or rare cell types.

Find out more: www.sartorius.com/live-cell-analysis-software 
http://www.sartorius.com/live-cell-analysis-software
mailto:askascientist%40Sartorius.com?subject=
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2

The Incucyte® Advanced Label-Free Classification Software Module enables automated quantification of cell morphology 
by employing multivariate analysis to identify multiple morphological features such as cell area, texture, brightness, and 
symmetry. These parameters are then used to create an unbiased, meaningful score value that enables cell subpopulations 
to be classified into two user-identified groups.
 

Overview of Incucyte® Advanced Label-Free Classification Analysis

The Incucyte® Advanced Label-Free Classification Analysis 
Software Module is an add-on to the Incucyte® Cell-by-Cell 
Analysis Software Module. It enables two classes of cells to 
be identified by their morphology and quantified over time 
in kinetic assays.

This workflow is summarized in Figure 1. Images of cells are 
acquired using the Incucyte® Adherent Cell-by-Cell scan 
setting, and individual cells are segmented using the 
integrated software. Advanced classification can then be 
applied, where the classifier is trained using control images 

of the two classes of interest. For example, to perform a 
label-free live | dead assay, the live class is represented 
using healthy, growing cells at a range of confluence values 
and the dead class is represented by images of dead cells 
when a cytotoxic compound has taken effect. Once the 
classifier has been trained to detect these two morpho-
logical classes, it can be applied to any other images 
containing the same biological model. Integrated software 
automatically classifies individual cells and the percentage 
of cells in each class over time can be visualized.

Figure 1
The Incucyte® Advanced Label-Free Classification Analysis Workflow
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Classification Analysis.
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Method

Mammalian cells have a wide range of different morpho-
logies, which can be characterized in several ways—they vary 
in size (area, outer perimeter length), shape (aspect ratio, 
solidity) and texture. Incorporating all these features within 
the Incucyte® Advanced Label-Free Classification Analysis 
Software Module, we have employed multivariate analysis 
that uses over 20 metrics describing different cell attributes. 
For every cell these metrics are distilled onto a single axis, 
resulting in a score value between 0 and 1. Dead cells will 
have a score close to 0 whereas live cells will have a score 
nearer to 1. A threshold is then applied to group the cells into 
one of two classes. Where the threshold is set at 0.5, all cells 
with scores < 0.5 will be classed as ‘dead’ and those > 0.5 will 
be classed as ‘live.’

Figure 2 demonstrates this classification process. A549 cells 
were treated with a concentration range of camptothecin 
to induce cell death in the presence of Incucyte® Annexin V 
reagent for the purpose of comparing the label-free 
multivariate response to that of a known apoptosis 
detection reagent.

Histograms show the fluorescence intensity, advanced 
label-free classification score value, or a univariate 
circularity value for control images of live and dead cells 
(Figure 2, top row). Both fluorescence and Incucyte® 

Advanced Label-Free Classification Analysis methods 
show clear separation between the classes; however the 
use of the label-free circularity metric on its own results in 
overlapping populations. Thresholds were used in each 
case to identify live versus dead cells (indicated by the 
dashed line on the histogram plots), and the time courses 
below show the percentage of dead cells per image 
through time (Figure 2, bottom row).

Fluorescence and Incucyte® Advanced Label-Free 
Classification Analysis show similar time- and 
concentration-dependent increases in the percentage of 
dead cells. While classification based only on the circularity 
of the cell yields concentration-dependent effects, the 
time course displays a high percentage of cell death in 
the untreated (vehicle) cells—an observation that is not 
reflected upon examining the images of cells.

Incucyte® Advanced Label-Free Classification Analysis 
and univariate (circularity) classification methods were 
compared to the standard fluorescence classification 
method using a confusion matrix. These results confirmed 
that Incucyte® Advanced Label-Free Classification Analysis 
is more accurate (accuracy = 0.95) than the label-free 
univariate method (accuracy = 0.75).

Figure 2
Fluorescent, Incucyte® Advanced Label-Free, and Univariate Classification Analyses



Note. Plate view shows the percentage of dead 
cells over time calculated using the Incucyte® 
Advanced Label-Free Classification Analysis 
tool. Phase HD images show cell morphology 
at 72 h post-treatment. 

Vehicle SKOV3 Cell Morphology, 72 h Advanced Label-Free Classification % Dead SKOV3 Cells

CMP 10 μM

CMP

CIS 50 μM

CIS

STP 1 μM

STP

NOC 1 μg/mL

NOC

Vehicle
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Applications

This workflow can be adapted to a wide range of 
applications, including label-free detection of dead cells.  
In this application note we will demonstrate the use of 
Incucyte® Advanced Label-Free Classification Analysis 
Software Module within three biological models: 1) a label-
free live | dead assay; 2) detection of mitotic cells within a 
cell cycle assay; and 3) label-free differentiation and 
morphological analysis of macrophage subpopulations.

Label-Free Live | Dead Assay
Advanced label-free classification can identify dead  
cells without the requirement for a fluorescent reagent. 
Therefore, it is an ideal solution for measurements of 
cytotoxicity where highly sensitive cell types are used and  
in cases where fluorescent channels are being dedicated  
to monitor other biologically relevant events. The label-free 
live | dead assay was validated against a panel of cancer cell 
lines with a wide variety of morphologies. Each cell type was 
treated with a concentration range of camptothecin (CMP), 
cisplatin (CIS), staurosporine (STP) and nocodazole (NOC) 
in the presence of Incucyte® Annexin V reagent for 

comparison. Figure 3 displays the morphology of SKOV3 
ovarian cancer cells upon treatment, demonstrating that 
each compound results in a different morphological change. 

Cell death was determined using Incucyte® Advanced 
Label-Free Classification Analysis Software Module, as well 
as fluorescence classification to identify annexin V-positive 
(apoptotic) cells. Phase HD images show that dead cells are 
visible in CMP and CIS treated conditions, while NOC 
treatment alters the form of the cell without cytotoxicity. 
STP induces rapid cell death and the apoptotic bodies are 
accompanied by a large amount of dead cell debris. These 
four compounds have different mechanisms of action and 
yield varied cytotoxic responses. The plate view shows the 
time course of percentage of dead cells calculated using 
the Incucyte® Advanced Label-Free Classification 
Analysis tool. STP induces rapid cell death even at low 
concentra tions, while CMP induces cell death more slowly. 
In compar ison, CIS induces only partial cytotoxicity at the 
highest concentration tested and NOC, which targets the 
cyto skeleton, appears to lack any concentration-dependent 
cytotoxicity.

Figure 3
Label-Free Live | Dead Analysis of SKOV3 Cells 
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Validation studies revealed that Incucyte® Advanced Label-
Free Classification Analysis yielded comparable results to 
fluorescence classification across a wide range of adherent 
cell types and compound treatments. Figure 4 shows that 

EC50 values for three cytotoxic compounds (CMP, STP, 
and CIS) calculated using Incucyte® Advanced Label-Free 
Classification Analysis were similar to those calculated using 
fluorescent cell health reagents across multiple cell types. 

Figure 4 
Response Curves for Incucyte Advanced Label-Free Classification Analysis and Fluorescent Reagents 

Label-Free Live | Dead Assay With Cell Cycle Multiplex
Label-free analysis is beneficial in circumstances where the 
cell type under investigation is highly sensitive, and the use 
of a cell health reagent is not desirable. It can also add 
valuable information in situations where the fluorescence 
channels are reporting other data such as cell cycle phase.

Figure 5 demonstrates the use of Incucyte® Advanced 
Label-Free Classification Analysis with cells expressing 
Incucyte® Cell Cycle Lentivirus reagent. These cells express 
green fluorescence in the S | G2 | M phases of the cell cycle, 
non-fluorescence in the transition phase M→G1, red or 
orange fluorescence in G1, and yellow fluorescence (red or 

orange + green) in the transition phase G1→S. A healthy, 
growing culture will display a mixture of all four populations 
as displayed in Figure 5A (vehicle). 

HeLa cells stably expressing Incucyte® Cell Cycle Lentivirus 
reagent were treated with increasing concentrations of 
carboplatin, a DNA-binding chemotherapeutic that 
induces cell cycle arrest and apoptosis. Fluorescence 
images indicate cell cycle arrest at 50 µM and 200 µM, 
where a high percentage of cells are in S | G2 | M and 
display green fluorescence (Figure 5A, carboplatin). This 
observation is reflected in the time course of percent cells 
in S | G2 | M and G1 phases (Figure 5B).
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Phase HD images reveal that in the presence of 50 µM 
carboplatin, cells have a normal morphology resembling 
that of the vehicle cells while those treated with 200 µM 
carboplatin have an apoptotic morphology. Incucyte® 
Advanced Label-Free Classification Analysis was used 
to identify live and dead cells, and the time course of 

percentage of dead cells indicates a cytotoxic effect at 
the two highest concentrations (Figure 5C). Overlay of the 
concentration response curves (Figure 5D) indicates the 
window between maximal cell cycle arrest and induction 
of apoptosis.

Figure 5 
Cell Death Measurements With Incucyte® Advanced Label-Free Classification Analysis
A.

Label-Free Mitotic Cell Detection With Cell Cycle 
Multiplex
In addition to detection of dead cells, Incucyte® Advanced 
Label-Free Classification Analysis can be used to identify 
other morphologies of interest, such as mitotic cells. Using 
fluorescence classification, the Incucyte® Cell Cycle 
Lentivirus reagent enables users to detect four distinct 
populations of cells based on their stage of the cell cycle: 
S | G2 | M (green), M→G1 (non-fluorescent) transition, 
G1 (red or orange), G1→S (red or orange + green) transition. 
With Advanced Label-Free Classification, cells in mitosis 
can be identified by their unique morphology, providing 
quantification of a fifth population.

To exemplify this, HeLa cell cycle cells were synchronized 
using a thymidine block. Cells were treated with thymidine 
(2.5 mM) for 24 hours until 80% accumulated in S | G2 | M. 

At 24 hours, the block was removed and the cells 
progressed synchronously through the cell cycle and 
began to divide once again. The time course of four 
fluorescent populations in Figure 6A demonstrates that 
each population peaks in sequence as the cells move 
through the cycle. 

As the schematic shows (Figure 6B), after S | G2 | M, the 
cells move through the non-fluorescent M→G1 transition 
into expressing red or orange fluorescence in G1, and red or 
orange + green in the G1→S transition. Approximately 
9 hours after the removal of the thymidine block, images 
were observed that contained a high percentage of 
mitotic cells as indicated by their small, circular and dense 
morphology. Advanced training set selection enabled this 
mitotic cell subpopulation to be used to train a classifier to 
detect mitotic versus non-mitotic cells.

B.

C. D.
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Figure 6
Identification of Five Subpopulations Within a Synchronized HeLa Cell Cycle Culture 
A.

The time course of mitotic cells in Figure 6C displays 
the same peaking profile as the fluorescent populations. 
Overlay of time courses (Figure 6D) confirms that the 
mitotic population (black) peaks immediately prior to that 
of the non-fluorescent M -> G1 transition (gray), and that 
during this time the cell count (teal) experiences a step-
wise increase.

Overall, these data demonstrate that the use of fluorescent 
markers with label-free morphological information enables 
researchers to extend the biological insight of subpopula-
tions within live cells simultaneously.

B.

D.C.
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Note. Incucyte® Advanced Label-free 
Classification Analysis was employed to 
distinguish monocytes (A, pink segmentation 
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population displayed a mixture of ramified 
(long, thin) and amoeboid (round, flat) 
morphologies. Using Advanced Training set 
selection, these two subpopulations were 
manually identified and used to train the 
software. Segmentation color indicates 
classification results (B). The data showed that 
within this biological model, 38% of cells were 
ramified (B, purple segmentation) and 62% 
cells were amoeboid (B, teal segmentation).
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Label-Free Differentiation Assay
The activation and differentiation of immune cells is often 
accompanied by morphological changes. For example, 
monocytes are a key component of the innate immune 
system and can differentiate into a number of functional 
immune cells such as macrophages. Under the influence 
of pro- or anti-inflammatory cytokines at the site of 
recruitment, these macrophages can be further  
activated to M1 or M2 phenotypes.

Figure 7 demonstrates the morphological changes 
observed upon differentiation of primary human 
monocytes to M1 and M2 macrophages. While monocytes 
are small, dense cells the M1 macrophage population is 
comprised of large, flat amoeboid cells. Incucyte® 
Advanced Label-free Classification Analysis was employed 
to distinguish monocytes (Figure 7A, pink segmentation 
mask) from M1 macrophages (Figure 7A, teal segmentation 
mask). The time course revealed that differentiation to M1 
macrophages occurred over a seven-day period; the 
differentiation process was non-linear.
 

Figure 7
Quantification of Morphological Populations Within Differentiation Assays With Incucyte® Advanced 
Label-Free Classification Analysis
A.

B.
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Summary and Conclusion

Using Phase HD images of control wells, the Incucyte® 
Advanced Label-Free Classification Analysis can be trained 
following a simple workflow to yield robust and reproducible 
data without the need for fluorescent reporters. Advanced 
training set selection allows users to identify cells of interest 
within an image, enabling enhanced control over training set 
selection. This software module can be applied to a variety of 
biological models including a live | dead assay, which can be 
employed using label-free images or multiplexed with 
additional fluorescent readouts; identification of mitotic  

cells adds another population of interest to cell cycle assays. 
Differentiation of monocytes to macrophages can be quan-
tified without the requirement for fluorescent reporter 
reagents, and mixed morphologies such as ramified versus 
amoeboid can be further investigated. 

Incucyte® Advanced Label-free Classification is a versatile 
software module enabling quantification of user-defined 
morphological subpopulations through time. 
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For our spotlight on bioimaging and 
analysis, we surveyed our audience to 
find some key trends in image acquisition 
and analysis 

Key trends
in image
acquisition
and analysis

IMAGE ACQUISITION

IMAGE ANALYSIS

Fluorescence Microscopy was the most popular imaging 

technique used, followed by live-cell imaging  

Adherent cell lines
proved the most popular cell type studied

Most researchers analyzed cell morphology qualitatively. 

And it was a close split between examining cell health 

and differentiation.

Gaining information and technical skills were the biggest barrier to 
completing successful machine learning (ML) analysis of images.

What imaging technique do you most 
commonly use? (%) 

What types of cells do you image?

How do you describe cell morphology?

In what applications do you examine 
cell morphology?

What image analysis pipeline
do you commonly use?

What do you think is the most common 
user error holding back image analysis?

What are the biggest barriers to 
accessing machine learning (ML) 
analysis techniques?

Recent surveys have highlighted 
that the most commonly analyzed 
images are still 2D. Why do you 
think this may be?

Many lab users are still hesitant about 
the use of label-free analysis and require 
more proof before utilizing it in their 
work

What do you think about when you hear 
the term “machine learning”?

70%

32.5%

22.5%

47.5%

15%

Qualitatively

Quantification of a
single metric at a time

Simultaneous
quantification of
multiple metrics

50%

12.5%

32.5%

Other
5%

45% 39.5%

Adherent cell lines

Non-adherent cell lines

iPSCs or iPSC-derived cells

Primary cells

Other

Ciliated protozoa, mouse retina,
whole mount, erythrocytes,
Chlorobaculum tepidum

Cell migration, Single-cell live-cell
imaging (TIMING), discocyte,
echinocyte, stomatocyte,
PHB production

“I use analysis software 
integrated into the 
microscope I use”

58.5%

Fluorescent reagents affect the health or morphology of the cells

19.4%

Fixation process affects the health or 
morphology of the cells

36.1%

Cells are too hard to individually segment

36.1%

Other (Immobilization of living cells, Too much demand 
for the equipment (delays))

8.3%

“I export my images and 
analyze them using…”

41.5%
Software used:

• Fiji (28.5%)

• ImageJ (38%)

• Imaris (20%)

• Timing/CellChorusⓇ(4.5%)

• CellProfilerTM(9.5%)

Cell health
Differentiation

15.5%
Other

I prefer fluorescent markers

25.7%

I’d like to go label-free

22.9%

Other

5.7%

Learn more: www.sartorius.com/incucyte

I need to see proof that it is 
just as reliable

45.7%

Improper

sample

preparation

25%

Selecting the correct

image analysis technique

33.3%
Absence of detailed

reporting for analysis

workflows

13.9%

Insufficient consideration

of analysis prior to

image acquisition

13.9% Accessibility

of tutorials

and workshops

13.9%
??
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Bioimaging & analysis 
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13.9%

13.9%

30.6%

58.3%

8.3%

None
I already use ML to
analyze my images

Availability/
accessibility
of 3D imaging
techniques

51.4%

Other

14.3%
Utility of 3D
cell models

20%

Utility of 3D
imaging
techniques

25.7%

Availability/
accessibility
of 3D cell models

40%

Barriers to the capture of 3D images

Hardware
I can’t manage this

on my machine

Software
I can’t find any software

that performs the type
of analysis I need

Training
I don’t know where to start/

I don’t know how
it could help me

Other 

Artificial intelligence Blind analysis

Computers

MathematicsAdvanced AI techniques

Pattern identification

Data accuracy

Reproducible results without supervision

Silicon Valley

Trainable segmentation analysis

Cell classification

Automation
Easy interpretation

Reduced user-input

Segmentation and Classification

Answers for ‘other’ included: Confocal microscopy, Holotomography, AFM Nomarski, Phase contrast optics, TIMING (CellChorus), 
Bright field and FITC.

MRI
5%

Photoacoustic 
tomography/microscopy

5%

X-ray CT 
5%

Imaging mass
spectrometry

7.5%

Bioluminescence
imaging 

7.5% PET 
10%

Imaging
flow cytometry 

15%

Other
20%

Electron microscopy 
20%

Live-cell imaging 
57.5%

Fluorescence 
microscopy  

72.5%

What is the biggest challenge you face in 
image analysis?
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Considerable heterogeneity exists in the properties and activity of individual cells, even in the simplest cell system. This arises 
from fundamental differences in the basic cell types present (e.g., tumor cells and fibroblasts), genetic or epigenetic varia-
tions, the stage of cell cycle or differentiation, and the impact of each cells’ unique and local dynamic microenvironment. 
Cellular plasticity and age-related changes add a further, long-term temporal complexity. Such heterogeneity is mirrored by 
the diversity of pharmacological response at the cellular level, where even seemingly identical cells may respond differently 
and at different times to drug treatments and perturbagens. Accordingly, analysis at the cell-by-cell level promises valuable 
and additional biological insight beyond which whole population measures may deliver. In this article, we consider this 
opportunity from a perspective of analyzing living cells over time, and describe new, enabling and industrial-scale, live-cell 
analysis solutions for quantifying the phenotypic biology of cell subsets in heterogeneous cultures.
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Standard Techniques for Analyzing Cellular Subsets: Strengths and Weaknesses

Flow cytometry is the best characterized and established 
method for true cell-by-cell analysis. Cells are analyzed one 
by one in a flow stream for light scattering and fluorescence. 
When combined with labeled antibodies to cell surface 
markers and fluorophores, a wide range of multivariate 
analyses can be applied. Each cell can be classified (binned) 
into a discrete subset to quantify how many of each cell 
type are present, and what the associated properties (e.g., 
cell health, size etc.) of each subset are. Using multiple 
fluorophore labels and high-end instrumentation, it is 
possible to create tens of distinct subsets simultaneously  
in a cell population (e.g., PBMCs). High-content imaging 
(HCI) methods can also be applied to resolve individual 
cells for heterogeneity and subset analyses. Typically, 
nuclear labels (e.g., DAPI) and advanced image analysis 
algorithms are combined to identify single cells and their 
boundaries and to extract features on a cell-by-cell basis. 
Again, subsets can be analyzed separately based on gating 
criteria. Mostly, this work is done using fix-and-stain 
protocols to maximize fluorescent signals to background 
and to permit labeling of intracellular structures (e.g., 
organelles). The third main approach is time-lapse 
microscopy. Here, researchers observe living cells under 
closely controlled environmental conditions, typically with 
single cell tracking and high spatial and temporal resolution. 
Unlike the other approaches, this gives critical insight into 
cell morphology, dynamics, and cell | cell interactions. 
Together, these three approaches provide an impressive 
toolkit for analysis at the cell-by-cell level.

Nevertheless, there remains a significant unmet need for 
additional technical solutions in this area. For both flow 
cytometry and HCI, the cell preparation and labeling 
methods cause significant disruption to the cellular 
environment potentially introducing experimental 
artefacts. HCI is suitable for analyzing adherent cells,  
but not non-adherent cells, while for flow cytometry the 
converse is true. In both cases, the analytical approaches 
are only amenable to a single time-point measure and, 
thus, do not easily report population shifts and changes in 
cell subsets over time. While microscope-based live-cell 
imaging methods can address these limitations, the iden-
tification of subsets (cell labeling) is typically more 
problematic in living cells, and only small numbers of  
cells (tens) can be routinely quantified. Thus, conclusions 
about subsets in the population may be statistically 
limited. Moreover, environmental control is hard to 
maintain on microscope stages for extended periods  
of time (e.g., > 24 h), which prohibits long term studies. 
Ideally, large numbers of cells (cf. flow cytometry, HCI) 
could be observed with high spatial resolution (cf. HCI, 
live-cell imaging) over long periods of time (hours–
weeks), using non-perturbing, cell labeling strategies.

Incucyte® Cell-by-Cell Analysis: An Overview

Incucyte® Live-Cell Imaging and Analysis is now a well- 
established method for quantifying cell behaviors over time 
at an industrial scale. In brief, the imaging platform resides 
within a standard cell incubator for full environmental 
control, automatically capturing and analyzing time-lapse 
images from up to 2304 assay wells in parallel (6 x 384-well 
plates). A wide variety of integrated application solutions 
(software, reagents, protocols) are available including 
assays for apoptosis, immune cell killing, neurite outgrowth, 
phagocytosis and 3D tumor growth and viability.

To date, all Incucyte® analysis is based on ‘whole-image’ 
measures whereby the information from all objects (cells)  
in the field of view is consolidated into an average, or 
aggregate, metric. While this allows for powerful data 
comparisons from well to well (as would be applied in drug 
screening assays, for example), it does not reliably inform  
of cell heterogeneity or readily allow cell subsets to be 
characterized. Indeed, it is not possible to differentiate a 
large effect of a treatment on a subset of cells from a small 
effect on every cell in the population. Small signal changes 
in subsets of cells are potentially masked or overlooked 
completely by dilution of the measured signal from non- 
responding cells. Worse still, an unknowing ‘net result zero’ 
may be returned if two subsets respond in differing 
directions (e.g., Manshian et al., 2015). To address this, we 
introduce new Incucyte® Cell-by-Cell Analysis Software 
Module and labeling methods that combine elements  
of time-lapse microscopy, HCI and flow cytometry 
approaches into an integrated solution.

A central element of the solution is the identification of 
individual cells using new image-processing algorithms  
that segment HD phase-contrast images. This permits:  
(1) label-free true cell counting, (2) extraction of basic 
morphological features of individual cells (e.g., size, shape), 
and (3) measurement of fluorescence intensity that 
originates from within each cell (‘fluorescence within a 
phase boundary’). Incucyte® live-cell analysis fluorescence 
reagents can be used including apoptosis probes 
(Incucyte® Caspase 3/7 Dye or Incucyte® Annexin V Dye), 
live | dead markers (e.g., Incucyte® Cytotox Green Dye) 
and green | orange | red | Near-IR fluorescent labels. To 
enable identification of cell subsets in heterogeneous 
cultures based on protein surface markers (e.g., CDs), we 
introduce a new, simple, no-wash Ab-labeling approach for 
fluorescent tagging of antibodies (Incucyte® Fabfluor-488 
Dye), as well as live-cell immunofluorescence protocols that 
allow non-perturbing, long-term monitoring of protein 
expression. Finally, using purpose-built, flow cytometry-like 
Incucyte® software tools, cell populations can then be 
visualized by either density plots or histograms, and 
classified into subsets using simple ‘gating’ thresholds. 
Importantly, changes in the population and different 
subsets over time can be explored via the interface and 
linked back to the raw images with simple color-coding  
of the classified objects. Together, the tool set enables 
researchers to easily observe and analyze subsets of living 
cells over time based on morphological, surface marker,  
cell health and/or functional properties (Figure 1).
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Segmentation Validation and Subset-Labeling

For validation of the cell segmentation method, we directly 
compared the changes in cell number for proliferating 
Incucyte® Nuclight Red-labeled Jurkat T lymphocytes using 
phase-image segmentation and fluorescent nuclei 
counting (Incucyte® Nuclight Red Lentivirus: Figure 2). 
Jurkat cells were plated at different densities (5K–40K cells 
per well) on poly-L-ornithine coated 96-well plates and 
scanned every 2 h for 96 h with an Incucyte® Live-Cell 

Analysis System (20X magnification). Throughout the 
duration of the experiment, the label free and fluorescent 
nuclei cell count values tracked very closely, indicative of a 
robust segmentation algorithm and cell counting method. 
Similar observations were made in a range of other 
non-adherent cell types including Raji, Ramos, and  
primary PBMCs.

Figure 2: Label-free cell counting: validation of cell segmentation method. Incucyte® Live-Cell Analysis System (20X) images of Incucyte® 
Nuclight Red-labeled Jurkat cells: (A) HD Phase + Phase Mask. (B) Phase Mask only. (C) Phase + Red Fluorescence. (D) Phase Mask + Red 
Fluorescence. Scale bar = 50 μm. (E) Time-course analysis of label free cell count (open symbols) and nuclear count (closed symbols) at different 
initial cell plating densities (5K-40K, 96-well plate). Note the close similarity of values obtained by the phase object and nuclear label counting 
methods.

Figure 1: Incucyte® Cell-by-Cell Analysis: concept and workflow

To illustrate the live-cell subset identification approach, 
specific antibodies to the leucocyte common antigen, 
CD45 and the B-lymphocyte specific antigen CD20, 
were labeled with Incucyte® Fabfluor-488 Dye (Figures 3 
and 4). The Fabfluor | antibody conjugates were then 
directly added to mixed cultures of Jurkat and Ramos B 
cells in full cell culture media. Incucyte® Opti-Green,  
a background fluorescence suppressing reagent, was 
included to minimize non-specific fluorescence from 
unbound Fab | antibody complexes. Images were 
analyzed using Incucyte® Cell-by-Cell Analysis, then 
gated for CD45 positive and CD20 positive fluorescence 
(separate wells). Importantly, the optimal gate positions at 
different time points of the experiment were sufficiently 
close as to be the same, such that time-dependent gating 
was not required. In line with expectations, > 95% of cells 
were labeled positive for CD45, irrespective of the 
proportion of Jurkat or Ramos cells added to the mix. 
CD20 positive cells were only observed in Ramos 
containing cultures at the proportions expected (Figure 3). 

In the continued presence of the Fab | antibody, an 
increase in the number of fluorescently labeled cells was 
observed over 48 h as the cells proliferated. Interestingly, 
the relative proportion of CD20 positive cells increased 
over this period, indicating a faster growth rate of the 
Ramos cells as compared to the Jurkats. This simple proof 
of concept experiment demonstrates the ability to specif-
ically label and quantify subsets of cells in mixed cultures 
and to subsequently track long-term changes in these 
subsets over time.

As a wider illustration of the applicability of the method for 
different CD markers, primary human PBMCs were labeled 
with seven different anti-CD marker antibodies, each 
coupled to Fabfluor-488 (Figure 5). For each of three 
individual donors, the proportion of cells identified as 
marker positive by Incucyte® Cell-by-Cell Analysis 
correlated extremely well (R2 > 0.95) to that obtained by 
conventional flow cytometry analysis.
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Seed cells (50 μL/well, 
5–30K/well) into a 
96-well plate.
Note: For non-adherent 
cell types, PLO coat 
plate prior to cell 
seeding.

Mix antibody and 
Fabfluor-488 Dye at a 
molar ratio of 1:3 in 
media, 3X final concen-
tration. Incubate for 15 
minutes to allow 
conjugation.

Add 50 μL/well, 3X final 
concentration.

Add antibody-
Fabfluor mix 
(50 μL/well) to cell 
plate. For non-
adherent cells, 
spin plate.

Capture images (time 
span and objective 
depend on assay and cell 
type, 10X or 20X) 
in Incucyte® Live-Cell 
Analysis System.

1. Seed cells 2.  Label test
  antibody

3.  Add Incucyte
  Opti-Green 
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Subset and Heterogeneity Application Examples

1. Subset Classification Based on Morphology: Activation 
and Shape Change in Human PBMCs
T cell activation is an antigen-dependent process leading to 
proliferation and differentiation of naïve T cells into effector 
cells. Upregulation of specific cell surface markers, 
including CD71 (transferrin receptor), is associated with 
activation as is an increase in cell size and shape change.  
To observe these effects at the cellular level and correlate 
surface marker protein dynamics with morphology, human 
PBMCs were stimulated with anti-CD3 | IL-2 (10 ng/mL) or 
vehicle and monitored over time (120 h) in the presence 
of Fabfluor-488-labeled anti-CD71. Phase and fluorescence 
images were analyzed cell-by-cell to extract information 
regarding the size distribution, eccentricity (an index of 
shape) and expression of CD71.

In control, vehicle treated wells, the average cell area and 
eccentricity of the entire population at t = 0 h was 81 ± 0.5 
μm2 and 0.57 ± 0.002, respectively and remained relatively 
constant over 120 h in culture. In contrast, following 
treatment with anti-CD3 | IL-2, the average cell area and 
eccentricity increased markedly to 117 ± 4 μm2 and 0.69 ± 
0.004 at 120 h, respectively. The shape change was rapid 
and preceded the size increase by > 24 h. There was greater 
heterogeneity in the individual cell morphological 
parameters of activated cells at the later compared to the 
earlier time points, indicating that not all cells responded 
identically (Figure 6). Following activation, there was a 
marked, rapid time-dependent increase in the fraction (%) 
of cells that were CD71 positive (Figure 7). As a control, the 
CD4 positive fraction remained relatively constant (15–25%) 
throughout the duration of the experiment. From 
inspection of the cell images and time-lapse movies, it was 
clear that the large, less rounded cells were preferentially 
labeled with CD71 compared to the smaller rounded cells. 
This was borne out by the cell-by-cell analysis: when cells 
were classified into distinct subsets based on size (> or < 110 
μm2) at 48 h, 75 ± 1% of large cells were CD71 positive 
compared to 12 ± 1% of smaller cells. By the end of the 
experiment, > 90% of the larger cells were CD71 positive. 
Together, these data nicely illustrate the value of 
independently analyzing subsets of cells, and demonstrate 
how cell surface marker expression can be dynamically 
linked to morphological change in a cell subset that 
responds to an exogenous stimulus.

2. Subset Classification Based on CD Markers: CD8 
Positive T Lymphocytes
Cytotoxic T lymphocytes are a subset of white blood cells 
that directly kill target cells that are either damaged, 
infected with bacteria or viruses, or recognized as 

cancerous. These T cells express the cell surface 
glycoprotein CD8, which is involved in the recognition of 
target cells via the T cell receptor | class 1 MHC antigen 
complex. Typically, between 15–35% of human PBMCs are 
CD8 positive.

As a proof of concept, we applied our cell identification 
method (Fabfluor-488-labeled CD8 antibody) and 
Cell-by-Cell Analysis techniques to study CD8 positive cells 
in mixed and co-culture models. First, we analyzed the 
sensitivity of CD8 positive cells to vincristine, a naturally 
occurring cytotoxic alkaloid used to treat a range of white 
blood cell cancers and thrombotic thrombocytopenic 
purpura. Human PBMCs were labeled with a Fabfluor-488 
conjugated CD8 antibody in the presence of Incucyte® 
Opti-Green. Incucyte® Annexin V Red Dye was used to 
detect cellular apoptosis. Cells were treated at t = 0, with 
either vehicle or a range of concentrations of vincristine 
(1–300 nM), and images were gathered every 2 h for 120 h 
(Incucyte® Live-Cell Analysis System, 20X). Cells were 
segmented via their phase boundary and classified as 
positive and/or negative for the CD8 surface marker (green) 
and Annexin V (red) fluorescence intensity. As anticipated in 
these longer-term cultures, there was a high proportion 
(30–40%) of non-viable cells in the control wells. 
Nevertheless, it was possible to construct a full temporal 
and concentration-response drug analysis for the CD8 
positive subset. Vincristine-induced toxicity was first 
detected 12 h post drug treatment; the threshold 
concentration was 3 nM, IC50 value 8 nM and maximal  
killing was observed at 100 nM (Figure 8). A true dynamic 
apoptotic index was subsequently calculated from the 
cell-by-cell analysis. Inspection of the Incucyte® images 
verified that the appearance of the Annexin V signal was 
coincident with morphological cell changes and a drop in 
total cell number.

In a separate study, we quantified the enrichment of CD8 
positive T lymphocytes in a co-culture model of PBMCs 
and tumor cells (Incucyte® Cytolight Red labeled A549 
adenocarcinoma). The intent here was to characterize the 
immune cell subset in the context of the tumor microenvi-
ronment. The phase segmentation algorithm was able to 
selectively identify immune cells (vs. tumor cells based on 
size and texture) within the co-culture. The absolute 
number and proportion of CD8 positive cells was 
determined using Fabfluor-488-labeled anti-CD8, and 
the Incucyte® Cell-by-Cell Analysis Software Module. 
PBMCs were activated with anti-CD3 | IL2 for 24 h prior  
to addition to plated tumor cells. Over time, there was a 
substantial rise in absolute cell number, and increase in  
the percentage of CD8 positive cells (from 35 ± 2% at the 

Figure 3: Single step antibody labeling (Incucyte® Fabfluor-488) and live-cell analysis protocol for quantifying cell subsets based on surface 
markers: concept and workflow.

Figure 4: Identification of cells in heterogeneous (mixed) cultures using cell-by-cell analysis: Incucyte® Fabfluor-488 coupled anti-CD20 and anti-
CD45 labeling of Jurkat and Ramos cells. Fabfluor-labeled antibodies were added to the cultures post-plating (A) Incucyte® Vessel View images 
(Yellow = antibody-labeled cell) of mixed cell populations in the ratios shown (J=Jurkat, R=Ramos). Note the greater proportion of CD20-labeled 
(Ramos) cells as the ratio of R:J increases. CD45 labels both cell types. (B) Incucyte® Cell-by-Cell Analysis was used for quantification of % expression 
in the mixed culture. (C, D) Time-courses of CD20+ cell count and % of population. Note the proliferation (increase in cell count) of CD20 cells, and 
time-dependent increase in proportion of CD20+ cells within the mixed culture. Values shown are the mean ± S.E.M. of 4 wells.
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formation of the culture to 60 ± 1% at 72 h), indicating an 
enrichment of the CD8 positive population. If PBMCs were 
not pre-activated, proliferation and enrichment were not 
observed. By establishing image masks around the tumor 
cells, it was possible to quantify ‘proximity’ analyses for the 
immune-cells and CD8 subset. Overall, CD8 cells were 

more closely spatially associated with tumor cells than the 
non-CD8 subset. Together, these two studies illustrate how 
a subset of immune cells can be identified and quantified in 
the context of other cells and monitored non-invasively 
over time.

Figure 5: Immunophenotyping: comparison of Incucyte® live-cell analysis and flow cytometry. Peripheral Blood Mononuclear Cells (PBMCs) from 
three donors were characterized for % expression for 6 CD markers and IgG control using live-cell analysis and flow cytometry. CD markers were 
identified using Fabfluor-488-labeled specific antibodies. A strong correlation was observed between the two methods when considering the mean 
values from the three donors (A), or each donor alone (B).

Figure 7: Subset analysis of activated T cells: CD71 upregulation. 
(A-C) Cell-by-cell density plots showing increase in CD71-
fluorescence as a function of time and cell area (phase) in 
activated T cells. (D) Dynamic changes in the proportion of 
CD71+, but not CD4+ cells, following activation. (E) Subset 
analysis showing preferential upregulation of CD71 expression 
in large (> 110 μm2) vs small (< 110 μm2) cells.

Figure 8: Susceptibility of human CD8+ T lymphocytes to vincristine-induced apoptotic cell death. (A) Frequency histograms of CD8, CD45 and IgG-
labeled hPBMCs. (B and C) Segmented Incucyte® images showing color-coded subsets of healthy and apoptotic (Annexin V+) CD8+ or CD8-cells (4 
groups) following treatment with vincristine (300 nM) or vehicle (48 h). Vincristine induced a concentration- and time-dependent reduction in the 
proliferation of CD8+ cells (D) and a concomitant increase in apoptosis (E). Concentration-response curves yielded IC50 or EC50 values of 4 nM for 
anti-proliferation and 8 nM for induction of apoptosis (F). Values shown are the mean ± S.E.M. of 4 wells.Figure 6: Cell-by-Cell Analysis: enlargement and morphological change in activated T cells. PBMCs were treated with anti-CD3 and IL-2, or vehicle 

control, and monitored over time with Incucyte® Live-Cell Analysis System. (A-D) Activation induced a time-dependent increase in average area and 
eccentricity (all cells). Note the change in eccentricity preceded the increase in area. The cell-by-cell area distribution (E) and density plots (F-H) 
highlight the increased heterogeneity over time following activation, and the appearance of a population of large cells with high eccentricity. Values 
shown are the mean ± S.E.M. of 4 wells.
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Summary and Future Perspectives

In this white paper, we have described an integrated 
solution for identifying and quantifying subsets of living 
cells in …heterogeneous cultures over extended time 
periods and at industrial scale. Specifically, the ability to 
temporally analyze subsets of cells based on morphology 
(e.g., size, shape), biomarkers (e.g., CD antigens, nuclear 
labels), health | function (e.g., live | dead) and even spatial 
parameters (e.g., proximity to other cells) is tremendously 
powerful. While our method does not provide for true 
single–cell tracking, the solution affords both temporal and 
spatial perspective, which is otherwise missing from flow 
cytometry or high-content imaging approaches. The 
method obviates the need for cell lifting or fix | wash 
protocols and the experimental and analysis workflows  
are amenable to the everyday lab user as opposed to an 
imaging specialist.

In the examples shown, we illustrate the time-courses of 
apoptotic cell death of a lymphocyte population in mixed 
PBMC cultures, the differentiation of PBMCs and 
associated cell shape changes in cell subsets, and the 
enrichment of CD8 positive T lymphocytes in an immune | 
tumor cell co-culture system. In each case, the binning and 
classification of cells into subsets is an absolute 

requirement for meaningful quantitation, and the temporal 
analysis provides valuable, functional kinetic insight into  
the timing of changes in the cell populations. As with any 
repeated measure over time, there is a greater confidence 
and statistical power associated with this data compared to 
arbitrary single time point measures, and outcomes can be 
validated with images and movies.

Beyond these examples, there are numerous other 
biological applications that would benefit from cell-by-cell 
and live-cell subset analysis over time. Cancer stem cells 
show resistance to chemotherapeutics and are drivers of 
the disease but are typically a minority component of a 
tumor sample. Pathogens may only infect a subset of cells 
to propagate. Typically, only small numbers of stem cells 
and precursors will differentiate to downstream phenotypes 
depending on the conditions. More generally, the quantifi-
cation of heterogeneity within a cell system enables 
researchers to probe novel questions as to whether cells 
with a particular stratified phenotype respond differently 
than their neighbors. In principle, this can be applied to any 
subset providing that there is a suitable reporter, biomarker 
or surrogate metric to enable the classification.

Figure 9: CD8 positive T cell enrichment in immune | tumor cell co-cultures. (A-C) Identification of hPBMCs (phase, yellow mask) and CD8+ (green, 
Fabfluor-488 | anti-CD8) subset in co-cultures with Incucyte® Cytolight Red A549 tumor cells. (D) Classified segmentation mask: purple = CD8+, 
cyan= CD8-. (E) Activation with anti-CD3 | IL2 induced a marked proliferative effect in the total population and enrichment of the CD8 subset (35% 
at t = 0 vs. 60% @72 h)

Going forward, there is opportunity for far deeper 
multi-parametric analysis of these living cell datasets. 
Similar to high-content image data processing, machine 
learning and deep learning algorithms could be applied to 
improve classification and subset resolution by better 
feature extraction, combining multiple variables and 
applying more rigorous statistical criteria (Caicedo et al., 
2017; Kraus et al., 2017). Specific heterogeneity index tools 
could be introduced to report on variability in the cell 
populations (e.g., Gough et al., 2014). A major challenge is 
how best to incorporate the temporal dimension for this 
large-scale analysis at the individual cell level. Coupling 
information extracted from hundreds of individual cells 
from one image to the next in a time sequence, when the 
images may be taken many minutes or hours apart, is not 
straightforward. There are a number of recent publications 
describing methods for individual cell dynamics using rapid 
(minutes) image acquisition paradigms (e.g., Heldt et al., 
2018), but extending this to low frequency sampling makes 
tracking each cell far more challenging. For the time being, 
we consider the Incucyte® approach of conducting 
Cell-by-Cell Analysis over time, without individual cell 
tracking, to be a valuable step forward.

Overall, the new approach outlined here provides a further 
dimension to live-cell analysis, where researchers can now 
probe questions at the cell-by-cell level and drill down  
into the characteristics and behaviors of subsets of cells. 
Increasingly, as live-cell analysis is applied to more complex 
and advanced cell systems with intrinsic heterogeneity, this 
analysis solution-set will yield the additional biological 
insight promised by these models.
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Bioimaging and analysis

Panel Discussion

Follow the QR code to
access the Panel Discussion:

Evolving requirements for drug discovery and basic research, such as the use of 3D cell cultures and
live-cell studies, have led to more sophisticated image capture technologies. These technologies can
provide highly detailed and complex images, which in turn require new analysis methods.

In this Panel Discussion for our Spotlight on bioimaging and analysis, we explore how these
technological developments have changed the landscape of bioimaging and detail key tools that have
facilitated improved image analysis with experts in the field.

Beth Cimini (left) is a Senior Group Leader and CZI Imaging Scientist in the Imaging Platform at the
Broad Institute in Cambridge (MA, USA). The Cimini lab focuses on bioimage analysis tool creation
(Piximi) and maintenance (CellProfiler), as well as on applying open-source tools to novel biological
problems. She created and directs the Platform’s Postdoctoral Training Program in Bioimage
Analysis, and also leads the Broad’s efforts toward community engagement and driving biological
projects for the Center for Open Bioimage Analysis (COBA).

Irene Martinez Carrasco (left) was born and raised in Madrid (Spain) where she studied Molecular
Biology. She completed a PhD at the Children’s Hospital Boston (MA, USA), after which she was
appointed with a technician position as a microscopist at the Severo Ochoa Molecular Biology
Center (Madrid, Spain). After this period, she was recruited as the manager of the microscopy
service at Umeå University (Sweden). During this time, she has been in contact with many research
groups and a broad range of research topics. She mainly supports users with the use of the
microscopes but also with image analysis.

Sheraz Ahmed (left) is a Senior Researcher at DFKI GmbH in Kaiserslautern (Germany), where he is
leading the area of Time Series Analysis and Life Science. He received his MS and PhD degrees in
Computer Science from the Technical University of Kaiserslautern under the supervision of Andreas
Dengel and Marcus Liwicki. His research interests include pattern recognition, anomaly detection,
gene analysis, medical image analysis, and natural language processing. He's published more than
100 papers on these, and related, topics.

Gillian Lovell (left) is a Senior Scientist at Sartorius. Within the BioAnalytics group, she has worked
across multiple research areas developing functional live-cell imaging assays and building these
into customer-facing applications. Gillian previously obtained a PhD in Chemical Biology from
Imperial College using multidisciplinary techniques to synthesize probes for biological targets and
evaluate their effects with biochemical and cell-based assays. After a period of postdoctoral
research, she joined Sartorius in 2015 working on the Incucyte® Live-Cell Analysis Systems.
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