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Introduction

The goal of bioimaging has always been to capture the maximum amount of information about a
biological process, with the minimum amount of interference. To achieve this goal there are two key
aspects that need to be operating well: imaging instrumentation, to capture high-resolution images in a
minimally invasive manner; and the image analysis methods, to extract as much information as
possible. When working in tandem, these techniques can act as a powerful tool for therapeutic
development and the advancement of personalized medicine.

However, the pursuit of more accurate models for disease and basic biology has led to more complex,
3D subjects for image capture and the need to capture processes real-time in live cells has driven the
instrumentation to become more sophisticated. These systems are capable of delivering highly
complex, detailed images that require cutting-edge analysis models to mine the maximum information
from each biological sample being evaluated.

This eBook rounds up some of the key features from our recent Spotlight on bioimaging and analysis,
examining the impact of deep learning on bioimage analysis and how Al has changed the drug
discovery space, before revealing some of the key trends in bioimage acquisition and analysis.

Discover the opportunities that cutting-edge live-cell imaging technologies have opened into the
exploration of cell subsets, heterogeneity and morphology.

Tristan Free

Senior Editor,
BioTechniques
tfree@biotechniques.com
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VascuViz: a novel method to uncover the
secrets of blood vessels

3D images of vasculature systems can now be achieved using a combination of two contrast agents,
allowing researchers to perform multiscale imaging of blood vessels.

Researchers at Johns Hopkins Medicine (MD, USA)
have developed a novel imaging agent for blood
vessels, referred to as 'VascuViz', which is compatible
with several imaging techniques, unlike current more
restrictive methods. This uses a quick-setting polymer
mixture to fill blood vessels prior to imaging and allows
researchers to visualize one sample at different scales.

Often researchers will use technigues such as MRI, CT
scans or microscopy to capture images of blood
vessels and study them. However, different imaging
agents are needed to make blood vessels visible for
each of these techniques and can often make them
invisible to other imaging methods, presenting
difficulties for observing macro- and microvasculature
structures simultaneously.

“Usually, if you want to gather data on blood vessels in
a given tissue and combine it with all of its surrounding
context like the structure and the types of cells
growing there, you have to re-label the tissue several
times, acquire multiple images and piece together the
complementary information,” explained Arvind Pathak,
who leads this research group. “This can be an
expensive and time-consuming process that risks
destroying the tissue’s architecture, precluding our
ability to use the combined information in novel ways.”

The research group hopes that VascuViz will
accelerate imaging-based research as it enables
researchers to collect more data from a single sample
by using one imaging agent that is applicable to a
variety of techniques.

“Now, rather than using an approximation, we can
more precisely estimate features like blood flow in
actual Dblood vessels and combine it with
complementary information, such as cell density,” said
Akanksha Bhargava, the lead author on this paper.

Bhargava looked at many combinations of imaging
agents that are currently used and tested them with
different imaging techniques. Bhargava found that
combining a CT contrast agent and a fluorescently
labeled MRI contrast agent (BriteVu and Galbumin-
Rhodamine) would be suitable for several optical-
imaging techniques and make the macro- and
microvascular structures visible at the same time.

As VascuViz was successful in test tubes, the research
group tested it in different mouse tissues, such as the
vascular system of breast-cancer models and kidney
tissues. 3D visualizations of the vasculature structure
of these were created by combining the images
collected using MRl and CT scans and optical
microscopy. This approach can be combined with
mathematical models or images of other tissue
elements to understand diseases with abnormal blood
flow, such as cancer and stroke.

VascuViz is especially useful for generating
computerized visualizations of complex biological
systems, for example the circulatory system, and is a
new tool in the growing field of 'image-based' vascular
systems biology. The researchers hope this will
improve understanding of the structure of tissue
dynamics and their response to drug treatments.

Source
1.Bhargava A, Monteagudo B, Kushwaha P, et al.
VascuViz: a multimodality and multiscale imaging
and visualization pipeline for vascular systems
biology. Nat. Methods 19, 242-254 (2022).
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changed the game?

We recently spoke to Beth Cimini (right), an analyst at the Broad Institute of
MIT and Harvard (MA, USA), about her role at the institute and how bioimage
analysis has evolved in recent years due to COVID-19 and the application of

deep learning.
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Bringing together researchers and labs from both
Harvard and MIT, the Broad Institute is a not-for-profit
research center, which was initially developed for
genomic medicine and has since expanded across
many disciplines of biomedical research. Nearly 20
years on from its inception, the Broad Institute focuses
on doing biology at scale; for example, the institute
currently performs around 1 in 30 COVID tests in the
United States. Cimini is part of the imaging platform
team, and develops open-access image analysis
software using deep learning to streamline analysis
leading to better and faster answers to biological
questions.

The imaging platform contains two labs working on
this mission. The first, led by Anne Carpenter and
Shantanu Singh, is focused on turning the data
gathered from images into answers to scientific
qguestions using deep learning and informatics. The
second lab, which Cimini leads, is focused on making
image analysis easier, leading to quicker and more
expansive image analysis. One function of the lab is to
maintain the Cell Profiler and Cell Profiler Analyst tools,
which were created by Carpenter and are freely
available tools that streamline bioimage analysis.

“You shouldn't need to know how to do [coding] in
order to do good microscopy and good image analysis”

When a researcher has an image to analyze, the first
step is to upload it onto an image analysis program
such as Imaged or Fiji and explore the thresholding
and filtering options to produce the best quality
images for analysis. But what happens when a
researcher has 5000 images they’d like to analyze?

Well, currently, they'd need to learn how to code. As
Cimini pointed out, “you shouldn't need to know how to
do [coding] in order to do good microscopy and good
image analysis”. Some people wouldn't know where to
begin, and many of us just don't have the time to
commit to mastering this skill, and that's where Cell
Profiler comes into play.

Cell Profiler allows you to string together a ‘pipeline’ of
different image analysis steps called ‘modules’ without
getting anywhere close to a line of code. This could
mean taking measurements, finding objects, smoothing
an image or highlighting the edge of the nucleus - or
all the above. Once you have created a pipeline using
Cell Profiler all you need to do is upload the whole set
of images into the program and the rest is done for
you.

Cell Profiler is a powerful program with between 900
and 950 different image analysis settings; however, a
powerful program like this doesn't come without a
trade-off, as is often the case. Cimini recognizes that
the program could initially come across as
overwhelming and appreciates that this may be one of
the largest challenges faced by users of Cell Profiler. “I
was a Cell Profiler before | worked on the program, so |
know how challenging it can be,” Cimini explained.
However, to combat this the team has developed a
thorough guide along with video tutorials to help
researchers use this tool.

“I was a Cell Profiler before | worked on the program, so
I know how challenging it can be.”

While Cell Profiler allows faster analysis of cells and
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turning images into data, Cell Profiler Analyst enables
researchers to take this data set and turn it into
tangible answers to questions. For instance, if a
researcher measured the cell area in 100 images
using Cell Profiler, they would then be able to use Cell
Profiler Analyst to visualize this data. Cimini put it
nicely, “Cell Profiler gets you the important numbers
and then Cell Profiler Analyst allows you to explore
that data to answer your questions.”

These are powerful tools that are freely available to all
researchers, something the Broad Institute feels is
essential for a number of reasons. The first is that
sometimes there are cases when a researcher wishes
to use the Cell Profiler platform to do something that
is not currently available on the program. As the code
is open-source, updates can be suggested to the
team at the Broad, which means the tool doesn't
remain stagnant and the technology continues to
develop. The second is ensuring that researchers in
countries with fewer resources don't have to pay for
expensive software licensing, which is not only good
for accessibility but will also accelerate the
advancement of scientific research.

“We think it makes science move a lot faster and it is
a lot fairer”

Open-source image analysis and tools such as Cell
Profiler and Cell Profiler Analyst have exploded
recently, which Cimini agreed could be down to
COVID. She observed that when researchers were
forced out of the labs and into their homes, they were
finding the time to dig out the data they had been
meaning to analyze, and the Broad was able to put
time and energy into teaching people how to use their
tools through webinars and office hours.

But, Cimini thinks the recent advancements in image
analysis software itself were down to something else
entirely.

Bioimage analysis: has deep learning Changed
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When Cimini first joined the Broad Institute in 2016,
the idea that deep learning could be used in
bioimaging was one the team believed possible;
however, the sticking point was gathering enough
data to train the models.

Neural networks are trained by data sets that contain
labels. For example, if you are training a neural
network to recognize a bus or a plane in an image,
you would train it with a data set of pictures labeled
either as 'bus’ or 'plane’. Each picture would then run
through the neural network, which would decide if the
picture was more likely to contain a bus or a plane. At
this point, the label on the picture would tell the
model if it was right or wrong. The model gets smarter
by prioritizing the route through the neural network
that results in the best predictions of what an image
contains. So, if the goal is to train a neural network to
isolate more specific features such as nuclei in
squamous endothelial cells, a data set with these
features and corresponding labels are required.

Industry leaders in deep learning and artificial
intelligence, such as Facebook, had enormous data
sets created by millions of people tagging their
friend’s faces for years that could be used to train
neural networks. So, for deep learning to be applied to
bioimaging, relevant data sets need to be created to
train the computer models.

Currently, Cell Profiler doesn't have its own
component of deep learning but can incorporate deep
learning networks and data sets such as Cellpose and
StarDist. As data sets improve, Cimini and the team at
Broad Institute hope their tool can come with a neural
network that works straight out of the box rather than
with the complicated settings and extra plug-ins
required now. Currently, Cimini spends time helping
researchers understand how to pick the best
thresholding algorithm for their work, which she
thinks will eventually become redundant, as the tool
will be able to do this itself. This will allow more time
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for the group to work with biologists to help them
make Cell Profiler pipelines or create more open-
source image analysis tools and workflows.

While deep learning is, as Cimini describes,
“undoubtedly valuable” it does not come without
limitations. There is no understanding of how a neural
network makes certain decisions, which Cimini
explained using the example of a deep learning
algorithm trained to classify handwritten numbers.
Once sorted and classified, Cimini filtered the results
to show only the elements of the dataset that the
algorithm had assigned as a three. While most of the
results were a three, there were a few twos and an
eight. “When mistakes are made it's hard to know why
and it is hard to know how to fix them,” says Cimini,
and often, the only option is to continue training the
network. For this reason, Cimini doesn’t believe that
deep learning tools will become the be-all and end-all
of bioimage analysis but there is no doubt it will
continue to develop further.

When asked what makes working on the Cell Profiler
and Cell Profiler Analyst technology so rewarding,
Cimini revealed that Cell Profiler is cited in over a
thousand papers a year, meaning that there are “at
least a thousand people a year who might not have
been able to get an answer before.” Cimini adds that,
“there is a little piece of science that couldn't be done
and now can”. For example, Cell Profiler has been
used to pick which therapeutic drugs would be best
suited to patients with leukemia or lymphoma. The
interface was able to predict which drugs would work
best for a patient and made better judgments about
treatment plans than a doctor alone, increasing the
life expectancy of patients with cancer. “"When you
have a huge impact on somebody'’s life, that is great,
but having thousands of tiny impacts on people’s
lives is also really rewarding.”

w o,
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As deep learning becomes more incorporated into
bioimage analysis programs, like Cell Profiler and Cell
Profiler Analyst, the speed at which data can be
sorted and analyzed will lead to faster science
dissemination. While these tools may look daunting at
first, those developing and maintaining them have
created a range of informative materials and enjoy
assisting researchers to find answers to a scientific
guestions within their images.

www.biotechniqgues.com
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Ask the Experts: The impact of
artificial intelligence in drug discovery

Artificial intelligence (Al) has become more common, both in our research
labs and in our homes, but what are the limitations of Al?

We turn to Anne Carpenter (Broad Institute; MA, USA), Wengong Jin (Eric
and Wendy Schmidt Center; MA, USA), and Jurgen Bajorath (University of
Bonn; Germany) to answer our questions about developing computational
techniques for drug discovery, the challenges of doing so, and how this
technology might evolve in the future.

Contents
e Whatis the difference between Al, machine learning and deep learning? ................. 2
e In what ways can Al be used to accelerate drug diSCOVErY?......ccvineineennieneereeeenes 3
e What have been some significant advancements or successes of Al in drug

(O ISToT0 1YL= SRRSO 4
* How is Al being used within your OWN researCN?..........ccoereincenienseeeseese e 5
e What do you think is a common misconception about using Al in drug discovery?... 6
e What are the challenges of developing Al for drug diSCOVEry?.......coeeveninencnnenenenen. 6
e What are the current limitations of using Al in drug diSCOVEry?........cccceeeeeeeeeennnnns 7
e How do you think Al will evolve in the next decade to accelerate drug discovery?... 8
@ MEET TG EXPOITS ..ottt 10

Biolechniques 1

The Inrernarional Journal of Life Science Methods



oQmuIg] O] 010110°

o ',,_-_..'_'“,' > 101 .:
11010 HEEER2100 101010

01 ) )

What is the difference between Al, machine learning and
deep learning?

Anne Carpenter

These terms can be confusing because some envelop the others, and some have both
a technical meaning and an everyday meaning. Simply speaking, in machine learning
(ML) you aim to teach a computer to answer questions correctly by providing it with
examples (either examples with the correct answers, in supervised learning, or just
examples of the data in unsupervised learning). The computer aims to discover general
rules rather than just memorizing answers. ML can be trained to answer questions like,
“Where are the nuclei in this image?” or “Where are the transcription factor binding sites
in this genome sequence?” or “What groups of similar samples exist in this dataset?”

To understand deep learning (DL), it helps to know that in most ML applications to date,
specific features were extracted intentionally from the data in the hopes that those
features would make it easier for the computer to learn correct answers. For example,
we design features in images relating to the texture, shape, and size of cytoplasmic
staining to try to detect whether a cell is metastatic or not.

However, DL is a type of ML where instead, you feed the raw data to the computer,
usually in huge gquantities, and let it sort out how to best extract features from the data
in order to make its decisions. The decision-making system has many internal layers,
which sparked the name 'deep’ learning. In my metastatic cell example, we would just
give the system the raw image pixel data and let the system figure out how to
distinguish metastatic cells by giving it many examples.

Now, Al: some use the term artificial intelligence to refer to any computer system that
can make good decisions, whereas others use it to refer just to a branch of ML where
the computer is forced to understand how it can learn generally, rather than being
trained just for a specific task.

Jurgen Bajorath
ML is a sub-discipline of Al and DL uses deep neural network (DNN) architectures and is
a sub-discipline of ML.

BiolechniqQues 2
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In what ways can Al be used to accelerate drug
discovery?

Anne Carpenter

This is such an exciting time to be working at the interface of computer science and
drug discovery because there are so many applications! Many individual steps of drug
discovery can be accelerated using Al.

For example, you can train systems to predict a given compound’s activity in an assay
based on its chemical structure or other pre-existing information about the compound.
You can train a system to sift through millions of images of cells treated with
compounds to identify a favorable phenotype. You can predict the structure of a
protein involved in a disease so that compounds can be designed to fit into them
better. You can even test millions of chemical structures virtually to assess how they
bind with the protein. Systems for these and many more tasks are not perfect, but they
can assist experts in making better and faster decisions.

Wengong Jin

Molecular screening is a crucial step in drug discovery, where a chemist puts a library of
existing compounds into a biological assay to measure their biological properties, such
as potency, toxicity and solubility. The number of chemicals that could be potential
drug candidates is estimated to be at least 10°%- these are all the molecules that obey
Lipinski's rule-of-five for oral bioavailability - creating a major bottleneck in screening
for drug candidates.

Standard high-throughput screening facilities in the pharmaceutical industry can only
test around 1O5compounds per day. It is, therefore, crucial to restrict the size of
compound libraries to make the screening time and associated costs feasible. We seek
to accelerate and automate drug discovery using Al.

Previous screening efforts in the pharmaceutical industry have generated many
datasets of molecules with labeled properties. This allows us to build molecular property
models that can predict the properties of a compound without testing it in a wet lab. We
can then use these models to virtually screen a much larger collection of molecules at a
much faster speed (108 compounds/day) than is possible with current high-throughput
screening facilities in a wet lab.

BiolechniqQues 3
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Jurgen Bajorath

The hope is that Al approaches will further expand the currently charted
chemical/target space and accelerate discovery paths from targets and novel chemical
entities to drug candidates.

Al enterprises engaged in drug discovery already claim such accomplishments on a
case-by-case basis. However, a word of caution is advisable since there is typically a
gap between claims, promotional efforts (for example, for fundraising), and the
scientific reality when it comes to pushing ‘'new’ technologies in drug discovery. In this
context, it should be noted that ML has a long history in pharmaceutical research and
that DL represents an extension of this framework, rather than a truly novel approach.

What have been some significant advancements or
successes of Al in drug discovery?

Anne Carpenter

| serve on the scientific advisory board of a company called Recursion, which uses ML
to identify changes in cell morphology that occur when genes associated with
disorders are perturbed. The team then screen compounds to identify those that could
reverse disease-associated changes. Using computers to analyze images makes these
decisions fast and objective. They now have four candidate therapeutics entering
clinical trials!

Wengong Jin

In 2020, whilst | was at MIT (MA, USA), we successfully used Al to discover a new
antibiotic called Halicin. We did this by training a DNN to become capable of predicting
molecules with antibacterial activity. We performed predictions on multiple chemical
libraries and discovered Halicin, a compound that is structurally divergent from
conventional antibiotics and displays bactericidal activity against a wide spectrum of
pathogens including Mycobacterium  tuberculosis and carbapenem-resistant
Enterobacteriaceae.

Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter
baumannii infections in mice. This work highlights the utility of DL approaches to
expand our antibiotic arsenal through the discovery of structurally distinct antibacterial
molecules. This discovery was published in Cell and received significant attention
because there is an urgent need to discover new antibiotics due to the rapid
emergence of antibiotic-resistant bacteria.

BiolechniqQues 4
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Jurgen Bajorath

Currently, Al in drug discovery mostly refers to DL and robotics, while the adaptation of
other Al sub-disciplines is still at very early stages. One of the areas where DL has
recently made a substantial impact is in computer-aided synthesis planning and
prediction, at least at the methodological level. However, many medicinal chemists
attest to the fact that these DL-driven advances are yet to be made practically
applicable in their day-to-day efforts, aside from raising awareness of what this
technology can do. Time and substantial efforts will be required until Al/DL tools
measurably impact the practice of drug discovery on a larger scale.

How is Al being used within your own research?

Anne Carpenter

We are teaching the computer to see things that humans cannot see in images. For
example, by eye, humans cannot distinguish cells with a certain type of leukemia from
those without, so biomarkers were developed that could be detected by fluorescence
flow cytometry. We recently used DL to teach the computer to identify those leukemic
cells based on just unstained microscopy images, without any biomarker labels, and it
succeeded!

Wengong Jin

| am currently using Al to search for synergistic drug combinations to treat COVID-19.
Drug combinations make promising therapeutic candidates for COVID-19, but the lack
of high-quality training data makes it difficult for DL to predict drug synergy accurately.

To address this challenge, | proposed a novel DL model called ComboNet, which jointly
models drug-target interaction and drug synergy. Together with the National Center for
Advancing Translational Sciences (MA, USA), we discovered two novel drug
combinations (remdesivir and reserpine; remdesivir and 1Q-1S) with strong synergy. This
work was published in PNAS in 2021 and we are currently applying this model to find
effective drug combinations for pancreatic cancer.

Jurgen Bajorath

Our research largely focuses on computer-aided medicinal chemistry and
chemoinformatics. Like other groups in this area, we have been using ML for molecular
property predictions and other applications for many years. Furthermore, we have also
developed ML approaches for a number of specific tasks such as predicting activity
cliffs (structurally similar compounds that are active against the same target but with
large differences in potency) or compound-target screening matrices.

BiolechniqQues 5
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In recent years, | have become increasingly interested in better understanding ML
predictions, their successes, and failures (or, in more colorful terms, shedding light on
the ‘black box" of ML, when even the designers of a computer model cannot explain
how a certain decision is made). This is also referred to as ‘explainable Al (XAl).

XAl refers to methods that allows humans to comprehend the results outputted by ML
algorithms. Notably, one of the attractions of DL is that DNNs enable us to tackle
problems that are difficult, if not impossible, to address using standard ML approaches
such as molecular image-based predictions or chemical representation learning. This is
another major driver for increasingly investigating DL in our research environment.

What do you think is a common misconception about
using Al in drug discovery?

Jurgen Bajorath

Firstly, it is often not sufficiently understood what Al is — and what it is not. We are still
far away from a situation where computers make autonomous decisions beyond
human reasoning, at least in pharmaceutical research. DL is data-driven, statistical in
nature, and far from being some form of ‘magic’ for unsolved problems in drug
discovery, such as high attrition rates.

Secondly, high expectations that Al might ‘revolutionize’ the drug discovery process are
on rather fragile grounds. No single scientific approach or technology has ever come
close to revolutionizing drug discovery and there are good reasons to anticipate that
this will also apply to Al. Hence, in light of the drug discovery history, arriving at a better
general understanding of current Al approaches, their opportunities and limitations,
would be beneficial for pharma environments and help to avoid unrealistic
expectations.

What are the challenges of developing Al for drug
discovery?

Anne Carpenter

It's fairly easy to achieve successful results for a supervised ML problem if you try
enough parameters or architectures and test it on only a small sample that is very
similar to what you've it trained on. The challenge is to create something that works
reliably in the real world, and that takes a serious investment in creating the training
and testing data to be sure that you are not fooling yourself with a system that has just
memorized the correct answers for a small dataset.

BiolechniqQues 6
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Wengong Jin

The major challenge of developing Al for drug discovery is data scarcity and bias, as
training data is usually limited in molecular property prediction, or is otherwise biased.
Additionally, molecular assays used for learning property predictors involve many
sources of spurious correlations, as a result of the choice of chemical libraries, batch
effects, or measurement biases, for example. Therefore, effective molecular property
prediction requires that models generalize beyond the chemical space of training
examples and avoid learning spurious correlations introduced by these biases.

It is also challenging to design proper evaluation protocols to measure the
generalization power of a method when applied to a new chemical space, as is common
in drug discovery.

Jurgen Bajorath

Unlike other fields where Al/DL has made a strong impact, drug discovery is overall not
a data-rich discipline. The use of limited amounts of mostly structured data does not
play into the strengths of ‘data-hungry’ DL approaches. Consequently, consistent
improvements of DL predictions over other ML approaches are not expected across
typical applications such as compound activity or property predictions and are currently
not observed.

In drug discovery settings, it will be important to identify applications where DL is most
likely to outperform standard ML approaches (for example, image-based analysis of
high-content assays) and concentrate on novel applications that are essentially
enabled through DL (such as advanced synthesis design). In addition to data
constraints, it should also be taken into consideration that drug discovery is a highly
interdisciplinary process with intrinsic scientific heterogeneity, making it rather unlikely
that ‘one-size-fits-all’ Al systems will be easy to conceptualize and implement.

What are some of the current limitations of using Al in
drug discovery?

Anne Carpenter

One of the biggest challenges | see is in predicting the toxicity of compounds. Solving
this problem would have a HUGE impact on the pharmaceutical industry but it's very
challenging to design Al solutions for it. For example, if | invented a new Al-based tool
that could tell you whether a given chemical structure would be toxic to humans, how
could | prove it works? We can't give lots of different compounds to humans outside of
clinical trials, and there are very few trials of new compounds each year to validate my
system.

Biolechniques 7
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| could train my system to predict the outcomes of toxicity testing on animals, but we
know that animal results are not entirely consistent with human results (although are
better than nothing). We could test the system against past clinical trials, but most likely
that is the data | used to train my system, so it might have just memorized the right
answers. So, the very small dataset of human toxicity data is a major challenge.

Jurgen Bajorath

In addition to general limitations resulting from data sparseness, the black box
character of Al/DL is another important issue. Drug discovery practitioners are typically
reluctant to rely on predictions that cannot be understood in chemical or biological
terms, which works against the acceptance of black box approaches for practical
applications. This emphasizes the need for XAl methods to rationalize predictions and
communicate them in an intuitive manner.

Since operating in discovery project teams typically requires multi-tasking and working
under time pressure, ease-of-use and robustness of new computational methods and
tools are essential for using them in practical applications and for making progress.
While developing consistently accurate predictive models is a formidable challenge,
transforming expert domain models into widely accessible tools presents another
challenge of similar magnitude.

How do you think Al will evolve in the next decade to
accelerate drug discovery?

Anne Carpenter

ML will be incorporated more seriously at each step in the pipeline, providing assistance
to experts and making their work more efficient. On top of this, | imagine we will see
improvements in generative ML systems. So, instead of telling you whether a proposed
compound is likely to be effective, this can instead generate a structure from scratch
that is predicted to have properties of interest, and even generate a proposed 'recipe’
for how to synthesize the compound. The real-world testing of compounds in biological
systems will always be a bottleneck and an important step in the process, but it's
exciting to see how much acceleration we can get from computational predictions.

Wengong Jin

| think Al will be applied to a much broader range of biological applications like
structural biology, immunology, gene therapy and drug delivery. Therapeutic
development in these areas has been hindered by the enormous time and cost
associated with experimental processes. Al-based therapeutic design may become the
next-generation technology in these fields.
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For example, the success of gene therapy or cancer drugs depends on the efficiency
and selectivity of nanoparticles in delivering the drug to desired cell types. We can
enhance drug delivery technologies by building neural networks to predict the
efficiency and selectivity of nanoparticles and generating new vectors with optimal
efficiency and selectivity via generative models.

Jurgen Bajorath

For the reasons discussed above, | do not anticipate ‘revolutionary’ Al-driven
developments in drug discovery and design over the next years. Provocatively put,
making better drugs through Al probably is an elusive goal for the next decade, given
that the discovery process is multi-factorial and much too complex and time-
consuming for a single technology to be a game-changer.

Instead, incremental advances in early-phase discovery such as in synthesis prediction,
targeted compound design, or in vivo drug property predictions are expected and will
certainly be helpful. However, for Al/DL to mature in discovery settings, there is an
urgent need for more prospective applications (that is, demonstrating what has been
accomplished, rather than what could be done). This will primarily depend on the
confidence of drug discovery investigators to translate predictions into experiments.

Practical applications in high-profile discovery projects will be essential for establishing
Al within the drug discovery spectrum and increasing its acceptance among
experimentalists. It is also anticipated that further progress will be made in integrating
predictive modeling with robotics in lab automation. Although this might not always
require rocket science, the potential impact of such efforts should not be
underestimated, especially if they lead to substantial reductions in the workload
required for standard procedures in chemical labs, biological screening. or in the scale-
up of experiments.

Last but not least, going beyond DL, it will also be very interesting to see a more
extensive deployment of other Al methods and tools such as recommender systems
that have the potential to impact the practice of drug discovery.
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Introduction

The morphology of a cell contains vast amounts of information on cell health and differentiation state, and yields insight into
cell phenotype. Biologists use this information daily to drive decisions around cell culture conditions and responses during
assay development. Traditionally this important information has been described qualitatively or via the use of single metrics as
a surrogate for total cell shape. However, these methods are subjective evaluations and can lead to loss of data and a lack of
robustness and reproducibility within cell-based assays.

Objective quantification of morphology enables researchers to make data-driven decisions for successful cell culture
propagation and experimentation. Morphological data can be used as a kinetic readout to determine compound effects—
forexample, counting the number of cells with viable versus apoptotic morphology yields a direct measure of cytotoxicity.
Furthermore, using label-free image analysis to derive these measurements has the advantage of being completely non-
perturbing to cell cultures, ensuring that the data generated is not an artifact of the detection method. This can be vital when
using highly sensitive or rare cell types.

Find out more: www.sartorius.com/live-cell-analysis-software
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The Incucyte® Advanced Label-Free Classification Software Module enables automated quantification of cell morphology
by employing multivariate analysis to identify multiple morphological features such as cell area, texture, brightness, and

symmetry. These parameters are then used to create an unbiased, meaningful score value that enables cell subpopulations
to be classified into two user-identified groups.

Overview of Incucyte® Advanced Label-Free Classification Analysis

The Incucyte® Advanced Label-Free Classification Analysis
Software Module is an add-on to the Incucyte® Cell-by-Cell
Analysis Software Module. It enables two classes of cells to
be identified by their morphology and quantified over time

in kinetic assays.

This workflow is summarized in Figure 1. Images of cells are
acquired using the Incucyte® Adherent Cell-by-Cell scan
setting, and individual cells are segmented using the
integrated software. Advanced classification can then be

of the two classes of interest. For example, to perform a
label-free live | dead assay, the live class is represented
using healthy, growing cells at a range of confluence values
and the dead class is represented by images of dead cells

when a cytotoxic compound has taken effect. Once the
classifier has been trained to detect these two morpho-

applied, where the classifier is trained using control images

Figure 1

The Incucyte® Advanced Label-Free Classification Analysis Workflow
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logical classes, it can be applied to any otherimages
containing the same biological model. Integrated software
automatically classifies individual cells and the percentage
of cellsin each class over time can be visualized.
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Note. This workflow can be applied to any use case in which two subpopulations of cells have distinct morphology. For example, mitotic cells can be

identified within a culture; undifferentiated monocytes can be distinguished from macrophages.



Method

Mammalian cells have a wide range of different morpho-
logies, which can be characterized in several ways—they vary
in size (area, outer perimeter length), shape (aspect ratio,
solidity) and texture. Incorporating all these features within
the Incucyte® Advanced Label-Free Classification Analysis
Software Module, we have employed multivariate analysis
that uses over 20 metrics describing different cell attributes.
For every cell these metrics are distilled onto a single axis,
resulting in a score value between O and 1. Dead cells will
have a score close to O whereas live cells will have a score
nearerto 1. Athreshold is then applied to group the cells into
one of two classes. Where the threshold is set at 0.5, all cells
with scores < 0.5 will be classed as ‘dead”and those > 0.5 will
be classed as ‘live.

Figure 2 demonstrates this classification process. A549 cells
were treated with a concentration range of camptothecin
to induce cell death in the presence of Incucyte® Annexin V
reagent for the purpose of comparing the label-free
multivariate response to that of a known apoptosis
detection reagent.

Histograms show the fluorescence intensity, advanced
label-free classification score value, or a univariate
circularity value for control images of live and dead cells
(Figure 2, top row). Both fluorescence and Incucyte®

Figure 2

Advanced Label-Free Classification Analysis methods
show clear separation between the classes; however the
use of the label-free circularity metric on its own results in
overlapping populations. Thresholds were used in each
case to identify live versus dead cells (indicated by the
dashed line on the histogram plots), and the time courses
below show the percentage of dead cells perimage
through time (Figure 2, bottom row).

Fluorescence and Incucyte® Advanced Label-Free
Classification Analysis show similar time-and
concentration-dependent increases in the percentage of
dead cells. While classification based only on the circularity
of the cell yields concentration-dependent effects, the
time course displays a high percentage of cell death in

the untreated (vehicle) cells—an observation that is not
reflected upon examining the images of cells.

Incucyte® Advanced Label-Free Classification Analysis

and univariate (circularity) classification methods were
compared to the standard fluorescence classification
method using a confusion matrix. These results confirmed
that Incucyte® Advanced Label-Free Classification Analysis
is more accurate (accuracy = 0.95) than the label-free
univariate method (accuracy = 0.75).

Fluorescent, Incucyte® Advanced Label-Free, and Univariate Classification Analyses

Advanced Label-Free
Classification

Fluorescence Reporter
Classification

Univariate
Classification

>100 . >100 ) >100 )
2 e Live 2 o Live 2 o Live
qg’_ 80 — Dead qg’_ 80 Dead % 80 Dead
[0] 0] [0]
i 60 & 60 & 60
© © ©
£ 40 & 40+ 8 407
€ 20 - £ 20 - £ 20 -
[} <) o
Z 0 T ) Z 0 T Z 0 T T T )
01 1 10 100 0.0 0.5 1.0 -2 0 2 4
Annexin V Intensity Classification Score Circularity
100 100 100 ~
- 10 uM Accuracy = 0.95 - 10 uM Accuracy = 0.75 - 10 uM
80 * 5uM 80 * 5uM 80 * 5uM
5 +25uM o +25uM 5 +25uM
g 60 125uM § 60 125 uM § 60 <+ 125uM
se 40 0.63 M se 40 0.63uM se 40 0.63 M
| 0.31uM | 0.31uM k 0.31uM
20 0.16 uM 20 0.16 uM 20 016 uM
0 — - Vehicle 0 mnssey - Vehicle 0 T T T Vehicle
0 24 48 72 0 24 48 72 0 24 48 72
Time (h) Time (h) Time (h)

Note. Incucyte® Advanced Label-Free Classification Analysis of live and dead cells yields similar results to the use of fluorescent Incucyte® Annexin V
reagent. Univariate analysis is less accurate (relative to fluorescence classification) than multivariate analysis via Incucyte® Advanced Label-Free

Classification Analysis.



Applications

This workflow can be adapted to a wide range of
applications, including label-free detection of dead cells.
In this application note we will demonstrate the use of
Incucyte® Advanced Label-Free Classification Analysis
Software Module within three biological models: 1) a label-
free live | dead assay; 2) detection of mitotic cells within a
cell cycle assay; and 3) label-free differentiation and
morphological analysis of macrophage subpopulations.

Label-Free Live | Dead Assay

Advanced label-free classification can identify dead

cells without the requirement for a fluorescent reagent.
Therefore, it is an ideal solution for measurements of
cytotoxicity where highly sensitive cell types are used and

in cases where fluorescent channels are being dedicated

to monitor other biologically relevant events. The label-free
live | dead assay was validated against a panel of cancer cell
lines with a wide variety of morphologies. Each cell type was
treated with a concentration range of camptothecin (CMP),
cisplatin (CIS), staurosporine (STP) and nocodazole (NOC)
in the presence of Incucyte® Annexin V reagent for

Figure 3
Label-Free Live | Dead Analysis of SKOV3 Cells

Vehicle SKOV3 Cell Morphology, 72 h

comparison. Figure 3 displays the morphology of SKOV3
ovarian cancer cells upon treatment, demonstrating that
each compound results in a different morphological change.

Cell death was determined using Incucyte® Advanced
Label-Free Classification Analysis Software Module, as well
as fluorescence classification to identify annexin V-positive
(apoptotic) cells. Phase HD images show that dead cells are
visible in CMP and CIS treated conditions, while NOC
treatment alters the form of the cell without cytotoxicity.
STPinduces rapid cell death and the apoptotic bodies are
accompanied by a large amount of dead cell debris. These
four compounds have different mechanisms of action and
yield varied cytotoxic responses. The plate view shows the
time course of percentage of dead cells calculated using
the Incucyte® Advanced Label-Free Classification

Analysis tool. STP induces rapid cell death even at low
concentrations, while CMP induces cell death more slowly.
In comparison, CIS induces only partial cytotoxicity at the
highest concentration tested and NOC, which targets the
cytoskeleton, appears to lack any concentration-dependent
cytotoxicity.

Advanced Label-Free Classification % Dead SKOV3 Cells
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Note. Plate view shows the percentage of dead ~ L venee

cells over time calculated using the Incucyte®
Advanced Label-Free Classification Analysis
tool. Phase HD images show cell morphology
at 72 h post-treatment.
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Validation studies revealed that Incucyte® Advanced Label-
Free Classification Analysis yielded comparable results to
fluorescence classification across a wide range of adherent
cell types and compound treatments. Figure 4 shows that

Figure 4

ECq, values for three cytotoxic compounds (CMP, STP,

and CIS) calculated using Incucyte® Advanced Label-Free
Classification Analysis were similar to those calculated using
fluorescent cell health reagents across multiple cell types.

Response Curves for Incucyte Advanced Label-Free Classification Analysis and Fluorescent Reagents
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Note. Diverse cell types display comparable concentration response curves using fluorescent cell health reagents (gray) and Incucyte®
Advanced Label-Free Classification Analysis (teal). Pairs of images display untreated (vehicle, top) and treated cells (bottom image, highest

concentration).

Label-Free Live | Dead Assay With Cell Cycle Multiplex
Label-free analysis is beneficial in circumstances where the
cell type under investigation is highly sensitive, and the use
of a cell health reagent is not desirable. It can also add
valuable information in situations where the fluorescence
channels are reporting other data such as cell cycle phase.

Figure 5 demonstrates the use of Incucyte® Advanced
Label-Free Classification Analysis with cells expressing
Incucyte® Cell Cycle Lentivirus reagent. These cells express
green fluorescence inthe S | G2 | M phases of the cell cycle,
non-fluorescence in the transition phase M—>G1, red or
orange fluorescence in G1, and yellow fluorescence (red or

orange +green) in the transition phase G1-S. A healthy,
growing culture will display a mixture of all four populations
as displayed in Figure bA (vehicle).

Hel a cells stably expressing Incucyte® Cell Cycle Lentivirus
reagent were treated with increasing concentrations of
carboplatin, a DNA-binding chemotherapeutic that
induces cell cycle arrest and apoptosis. Fluorescence
images indicate cell cycle arrest at 50 uM and 200 uM,
where a high percentage of cellsare in S | G2 | M and
display green fluorescence (Figure BA, carboplatin). This
observation is reflected in the time course of percent cells
inS| G2 | Mand G1phases (Figure 5B).



Phase HD images reveal that in the presence of 50 uM
carboplatin, cells have a normal morphology resembling
that of the vehicle cells while those treated with 200 uM
carboplatin have an apoptotic morphology. Incucyte®
Advanced Label-Free Classification Analysis was used
to identify live and dead cells, and the time course of

percentage of dead cells indicates a cytotoxic effect at
the two highest concentrations (Figure 5C). Overlay of the
concentration response curves (Figure 5D) indicates the
window between maximal cell cycle arrest and induction
of apoptosis.

Figure 5
Cell Death Measurements With Incucyte® Advanced Label-Free Classification Analysis
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Note. Incucyte® Advanced Label-Free Classification Analysis enables cell death measurements in cells expressing Incucyte® Cell Cycle Lentivirus
reagent. A healthy, growing culture displays a mixture of all four cell populations in various phases of the cell cycle (A). After the addition of carbo-
platin, fluorescent images indicate cell cycle arrest, where a high percentage of cells are in S | G2 | M and display green fluorescence (B). Incucyte®

Advanced Label-Free Classification Analysis indicates a cytotoxic effect at the two highest concentrations of carboplatin (C). Overlay of the
concentration response curves indicates the window between maximal cell cycle arrest and apoptosis (D).

Label-Free Mitotic Cell Detection With Cell Cycle
Multiplex

In addition to detection of dead cells, Incucyte® Advanced
Label-Free Classification Analysis can be used to identify
other morphologies of interest, such as mitotic cells. Using
fluorescence classification, the Incucyte® Cell Cycle
Lentivirus reagent enables users to detect four distinct
populations of cells based on their stage of the cell cycle:
S1G2 | M(green), M—=G1 (non-fluorescent) transition,

G1(red ororange), G1-S (red or orange + green) transition.

With Advanced Label-Free Classification, cells in mitosis
can be identified by their unique morphology, providing
quantification of a fifth population.

To exemplify this, Hela cell cycle cells were synchronized
using a thymidine block. Cells were treated with thymidine
(2.5 mM) for 24 hours until 80% accumulated in S| G2 | M.

6

At 24 hours, the block was removed and the cells
progressed synchronously through the cell cycle and
began to divide once again. The time course of four
fluorescent populations in Figure 6A demonstrates that
each population peaks in sequence as the cells move
through the cycle.

As the schematic shows (Figure 6B), after S | G2 | M, the
cells move through the non-fluorescent M—G1 transition
into expressing red or orange fluorescence in G1, and red or
orange + green in the G1-S transition. Approximately

@ hours after the removal of the thymidine block, images
were observed that contained a high percentage of

mitotic cells as indicated by their small, circular and dense
morphology. Advanced training set selection enabled this
mitotic cell subpopulation to be used to train a classifier to
detect mitotic versus non-mitotic cells.



Figure 6
Identification of Five Subpopulations Within a Synchronized HelLa Cell Cycle Culture
A B.
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Note. Time course of fluorescent populations (A) indicate the changing cell cycle phase (B); time course of mitotic cells (C) are indicated in black.
Cell count (teal circles, D) overlays the mitotic (black circles) and non-fluorescent (gray circles) populations.

The time course of mitotic cells in Figure 6C displays

the same peaking profile as the fluorescent populations.
Overlay of time courses (Figure 6D) confirms that the
mitotic population (black) peaks immediately prior to that
of the non-fluorescent M -> G1 transition (gray), and that
during this time the cell count (teal) experiences a step-
wise increase.

Overall, these data demonstrate that the use of fluorescent
markers with label-free morphological information enables
researchers to extend the biological insight of subpopula-
tions within live cells simultaneously.



Label-Free Differentiation Assay

The activation and differentiation of immune cells is often
accompanied by morphological changes. For example,
monocytes are a key component of the innate immune
system and can differentiate into a number of functional
immune cells such as macrophages. Under the influence
of pro- or anti-inflamma