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The advent of single-cell sequencing has revolutionized the transcriptomics space, allowing
researchers to delve deeper into cell properties like gene expression than previous methods, which
simply provided ensemble average measurements of all the cells in a sample. The technique has had
such an impact that it has been recognized as Nature’s Method of the Year twice in one decade; it was
first awarded for its initial development in 2013 and then for the addition of multimodal omic capabilities
in 2019.

Despite the meteoric rise of this technique, significant challenges remain: vast amounts of data are
produced by these studies, which can be challenging to analyze and interpret. The collection of single-
cell data; therefore, has to go hand-in-hand with the tailored use of machine learning methods that
drive the generation of hypotheses and the design of validation experiments. Sample preparation for
these single-cell studies can also be exacting and require sophisticated methods to isolate and extract
RNA for analysis. 

This eBook will provide an insight into the breadth of topics impacted by the development of single-cell
transcriptomics, and provide critical tips for sample preparation for the generation of single-cell
transcriptomic data and its subsequent analysis. Discover  techniques for isolating individual cells
suitable for single-cell RNA sequencing analyses from intramedullary canal tissue and learn about the
analysis of single-cell transcriptome data for the identification of immunoglobulin classes.  
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A new single-cell sequencing atlas of human teeth has provided a comprehensive understanding of
their make up, and could take us one step further toward a reality of regenerative dental treatments.

Single-cell sequencing provides new wisdom
about our teeth

News

 www.biotechniques.com

Teeth are a unique tissue, unique to each person.
Underneath your enamel lies dentin and the dental
pulp, a vascularized and innervated tissue lined by
odontoblasts. The tooth is then anchored to the bone
via the periodontium, which is crucial for tooth
stability.

Both the pulp and the periodontium are subject to
pathologies such as caries and periodontitis, which can
often result in the need for dental treatments.

However, both of these areas have their own
regenerative potential, owing to the presence of
mesenchymal stem cells. These two stem cell
populations are aptly named dental pulp stem cells and
periodontal stem cells. Both types are multipotent and
involved in tissue regeneration and thus have garnered
interest for their potential use in dentistry. However, in
vivo studies looking to harness their regenerative
potential have not borne fruit.

The new single-cell sequencing atlas produced by
Thimios Mitsiadis and his team at the University of
Zurich (Switzerland), predominantly using single-cell
RNA sequencing and analysis technologies, covers
both these tissues and stem cell populations, providing
the highest resolution data for human teeth to date.

Commenting on the reasons behind the study,
Mitsiadis explained: “Single-cell approaches can help
us understand the interactions of dental pulp and
periodontal cells involved in immune responses upon
bacterial insults. Therefore, single-cell analysis could
be useful for diagnostic purposes to support the early
detection of dental diseases.”

Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE,
Mitsiadis TA. A single-cell atlas of human teeth.
iScience 24(5), 102405 (2021).

Surprisingly, while the team identified great cellular
heterogeneity in both tissues, the molecular signatures
of the stem cell populations were similar. The team
theorized this is due to their distinct
microenvironments. If this theory stands true after
further investigation, these findings could open new
avenues for cell-based dental therapeutics.

Reference: 
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Frozen tissues and Tabula Sapiens: the latest
discoveries using single-cell transcriptomics
from the Human Cell Atlas

INTERVIEW

The latest studies published by The Human Cell Atlas
make further progress toward their goal of mapping
every human cell type, and these four papers focus
on multi-tissue cell analysis.  

The Human Cell Atlas (HCA) was founded in 2016 and
is an international consortium consisting of 2,300
members from 83 countries working towards charting
every cell type in healthy human bodies. The HCA has
created detailed maps of more than one million cells
collected from 33 organs and systems and has mainly
focused on individual organs and tissues, or smaller
subsets of tissues. Now, they have developed
methods to collect data needed for multi-tissue cell
atlases. The resulting cell atlases are openly available
meaning researchers can compare specific cell types
and their functions across the body.

Studying immune cells across tissues

Until now, the HCA focussed on immune cells that are
transported in the blood; however, immune cells in
tissues also play an important role in the immune
system. Researchers from the HCA have created a
catalog of immune cells after sequencing RNA from
330,000 single immune cells to understand their
function in different tissues. [1] From this catalog,
they developed a machine learning tool called
CellTypist to automate cell identification. Using this
tool, they identified around 100 different immune-cell
types and their distribution across tissues, for
example, T cells, B cells, and macrophages.

“By comparing particular immune cells in multiple
tissues from the same donors we identified different
flavors of memory T cells in different areas of the 

body, which could have great implications for
managing infections,” says Sarah Teichmann, who is
the Head of Cellular Genetics at the Wellcome Sanger
Institute (Cambridge, UK) and a co-author on the
paper. “Our openly available data will contribute to the
HCA and could serve as a framework for designing
vaccines, or to improve the design of immune
therapies to attack cancers.”

The second study published looks at the tissues
involved in the formation of blood and immune cells
and reveals the cell types lost from childhood to
adulthood. This could inform in vitro cell engineering
and research into regenerative medicine. [2]

Freezing tissues for analysis

A single-cell atlas would be beneficial to identify and
map out the specific cell types in which disease
genes act. To create this, all the cell types need to be
profiled, including those that are difficult to collect,
for example, fat cells, or cells from skeletal muscle or
neurons. Additionally, it is essential to profile cells
from many different individuals, so freezing tissue
before analysis is required.

Researchers from the HCA have developed a single-
nucleus RNA sequencing method using frozen cells.
[3] They then used this method to create a cross-
tissue atlas and analyze 200,00 cells from a bank of
frozen tissues with rare and common disease genes.
A novel machine-learning algorithm was used to
associate cells in the atlas with 6,000 single-gene
diseases and 2,000 complex genetic diseases and
traits to identify cell types and gene programs in
disease. This could lead to novel starting points for 
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Frozen tissues and Tabula Sapiens: the latest
discoveries using single-cell transcriptomics
from the Human Cell Atlas

INTERVIEW

health and disease studies in the future.

Aviv Regev (Genentech Research and Early
Development; CA, USA), senior author of the paper
explains: “Our single-nucleus HCA study
demonstrates a powerful large-scale way to analyze
cells from frozen tissue samples across the body with
deep-learning computational advances and opens
the way to studies of tissues from entire patient
cohorts at the single-cell level. We were able to create
a new roadmap for multiple diseases by directly
relating cells to human disease biology and disease-
risk genes across tissues.” 

The Tabula Sapiens dataset

The fourth and final paper being published in Science
from this collection produced a cross-tissue atlas
from live cells. [4] The resulting dataset is called
‘Tabula Sapiens’. This was done using single-cell RNA
sequencing of live cells to analyze several organs
from the same donors. The Tabula Sapiens has been
used to characterize more than 400 specific cell
types, distribution and variations in gene expression.
This will provide researchers with a large resource of
annotated cell types and the Tabula Sapiens enabled
the first large-scale analysis of alternative gene
splicing in a single-cell atlas.

“The Tabula Sapiens is a reference atlas that provides
a molecular definition of hundreds of cell types across
24 organs in the human body,” said Stephen Quake, a
senior author of this paper and a Professor at
Stanford University (CA, USA). “It represents the
efforts of more than 150 authors 

Conde CD, Xu C, Jarvis LB et al. Cross-tissue
immune cell analysis reveals tissue-specific
adaptations and clonal architecture in humans.
Science 376(6594) eabl5197 (2022).
Suo C, Emma Dann, Goh I et al. Mapping the
developing human immune system across organs.
Science doi: 10.1126/10.1126/science.abo0510
(2022)(Epub ahead of print).
Eraslan G, Drokhlyansky E, Anand S et al. Single-
nucleus cross-tissue molecular reference maps
towards understanding disease gene function.
Science. 376(6594) eabl4290 (2022).
The Tabula Sapiens Consortium. The Tabula
Sapiens: a multiple organ single-cell
transcriptomic atlas of humans. Science
376(6594) eabl4896 (2022).
Human Cell Atlas. Multi-tissue cell atlases lead to
leap of understanding of immunity and disease.
https://www.humancellatlas.org/multi-tissue-
cell-atlases-lead-to-leap-of-understanding-of-
immunity-and-disease/                                        
 [Accessed 04 July 2022]

across several institutions; the scientific community
will be discovering new insights into human biology
from this resource for many years to come.”

Together, these four studies contribute to the single
Human Cell Atlas being created by the consortium
and could have therapeutic implications like
understanding common and rare diseases, vaccine
development, and anti-tumor immunology.
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Single-cell analyses
top tips for sample preparation and informatics

In association with 10x Genomics

Engage with
key stakeholders
early: 

Robust single-cell analysis begins with
thorough study design

What must you measure to realize your experimental goals?

Key steps for sample preparation

Sample type: whole cells or nuclei?

Sample quality is critical

Keeping cells intact is essential for sample quality

Selecting sample dissociation methods

Improving poor quality samples to
reach 70% cell viability

Consider how your data will be analyzed

Analyzing yourself?

What are you measuring?

To secure a good quality sample, with cell viability over 70%:

Protein + RNA

Input
required Whole cells

Begin your design with the
end goal in mind 

Bioinformaticians

Scientists

Statisticians

Sample preparation

Informatics 

RNA RNA + open chromatin Open
chromatin

Protein
expression

Gene
expression

Chromatin
accessibility

Whole cells or nuclei Nuclei

Sample
collection

Aggregates/clumps

Subcellular debris

Free floating RNA/DNA

Biological decomposition

RNA leakage

RNA degradation

Physical decomposition

Clean

Healthy

Intact

Minimize:

Intact cell

- Required for frozen samples

- More likely to damage cells

Cell membranes are intact, 
nucleic acids maintained inside cell

Little background signal.
Clean single-cell data!

Increased background signal. 
Poor single-cell data

Cell membranes are compromised, 
RNA can start leaking out

Compromised cell

To keep samples:

Sample
preservation

and transport

Single cell or
nuclei isolation

Sample
enrichment
or depletion

Sample QC

Cells Nuclei

Assay compatibility • All gene-expression and
  immune-profiling solutions

• All gene-expression and 
   epigenomics assays

• Requires fresh tissue that can
   be easily dissociated

• Good for flash-frozen tissue or
   hard to dissociate tissue

• Required input for epigenomics 
   assays

• Unspliced RNAs with lots of introns
• Chromatin (epigenomics assays)

• No cell surface proteins, no cell
   membrane

• Frozen tissue can be transported 
  and stored

• Protocols available, optimization 
  required

Sample type

Analytes obtained

Storage

Protocols available

• Spliced mRNA and lots of it
• Cell surface proteins

• Cell suspensions can be 
   cryopreserved
• Fresh tissue must be 
   dissociated

• Lots of dissociation protocols, 
   some optimization may be 
   required

- Preserves cell integrity

- Some enzymes impact 
   cell surface proteins 

Enzymatic dissociation Mechanical dissociation

Wash: to remove dead cells and cell debris

Save budget, but requires
expertise, IT infrastructure
and time

Opportunity to develop new
skills in the lab

If expertise available,
can be faster and require
less communications

Select your tools wisely

Command line interface tools

Filter: to remove ambient RNA

Enrich/deplete: to select for a specific cell 
type or remove unwanted cells

Graphical user interface tools

More user friendly

More constrained

Can be faster and more convenient for
the initial stages of analysis

Flexible

Requires command coding knowledge

Can be the only option in
some situations

Commercial Open source

Store in the cloudInstall locally

More reliable

Support available to fix occasional bugs,
answer questions and resolve issues

Require budgets

Occasionally free

More prone to bugs

Many options

Free

Support is inconsistent between platforms 

Scalable

Can introduce privacy concerns for
certain users

Maintenance provided by the cloud

More secure

Requires adequate infrastructure

Requires system administrators
for maintenance

Contact early for tips
on how to provide them
with the best data

Must clearly communicate
needs and goals

Typically requires more back
and forth communication

Department/institute
bioinformatician

External company/data
analysis service provider

Ensure your data is
produced and formatted 
to the provider specifications

Must clearly communicate
needs and goals

Typically requires more back
and forth communication

Yourself

Wash

Filter

Enrich or
deplete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



Benchmark
Comparison of optimized methodologies for
isolating nuclei from esophageal tissue
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First draft submitted: 16 April 2021; Accepted for publication: 17 January 2022; Published online: 14 February 2022

ABSTRACT
Single-nuclei RNA sequencing allows single cell-based analysis in frozen tissue, ameliorating cell recovery biases associated with enzymatic
dissociation methods. The authors present two optimized methods for isolating and sequencing nuclei from esophageal tissue using a com-
mercial EZ and citric acid (CA)-basedmethod. Despite high endogenous RNase activity, these protocols produced libraries of expected fragment
length (average length EZ: 745 bp; CA: 1232 bp) with comparable complexity (median Transcript/Gene number, EZ: 496/254; CA: 483/256). CA
nuclei showed a higher proportion of ribosomal gene reads, potentially reflecting co-isolation of nuclei and adherent ribosomes. The authors
identified 11 cell lineages in the combined datasets, with differences in cell type recovery between the two methods, providing utility dependent
on experimental needs.

METHOD SUMMARY
The authors present a method for isolating intact nuclei from frozen esophageal tissue for high throughput single-nuclei RNA sequencing using
microfluidic-based droplet partitioning. This protocol overcomes high levels of endogenous RNase activity in this barrier epithelium and would
therefore be applicable to other tissue types affected by similar issues.

KEYWORDS:
esophagus • nuclei • RNA • sequencing • single cell • tissue sampling • transcriptome

Single-nuclei RNA sequencing (snRNA-seq) allows the identification of cell types in heterogeneous tissues that have been frozen before
downstream processing and analysis. Commercial buffers exist to isolate nuclei, as well as traditional salt and detergent-based meth-
ods [1]. These buffers must be gentle enough to lyse cell membranes while preserving nuclear membrane integrity. Nuclei can then be
purified from cellular debris and contaminating cell-free RNA through multiple centrifugation steps, fluorescence-activated cell sorting
(FACS) or density gradients (e.g., sucrose or iodixanol) before proceeding with microfluidic encapsulation and RNA barcoding [1,2].

As a barrier epithelial tissue, the esophagus contains RNases, which may play a role in mediating antiviral defense [3]. From the
authors’ single-cell RNA sequencing datasets, they have identified the cellular source of the expression of these RNases (Figure 1A–C).
The authors identified high levels of endogenous RNases in outer keratinocyte populations, which can contribute to the loss of RNA
integrity. This is in keeping with the role for RNase 7 in antiviral activity in keratinized cells [4,5]. Upon disruption of cell membranes
during freezing and subsequent nuclei extraction, there is significant and rapid degradation of nuclear RNA (Figure 1D), which is likely to
be associated with the release of reactivated RNases [6]. The authors have optimized two nuclei isolation methods to protect nuclear
RNA integrity in frozen esophageal tissue (Figure 2) and demonstrate that both methods can recover a high diversity of cell populations
following snRNA-seq.

To assess these methods, the authors obtained sequencing data from nuclei from a single patient, using one sample of snap-frozen
normal human esophagus obtained by surgical resection (see ethical disclosure statement). Using the Nuclei EZ prep nuclei isolation
kit (Sigma), according to published methods used for isolating nuclei for snRNA-seq by Dronc-seq [7], the authors found that nuclei from
frozen esophagus lacked sufficient quality to generate cDNA libraries (Figure 1D). To overcome the effects of endogenous enzymes,
they initially added an RNase inhibitor to the nuclei isolation buffer (0.2% v/v Lucigen NxGen RNase inhibitor) and transferred the frozen
tissue to an RNA rescuemedium (RNALater-ICE) without defrosting and thenmaintained it in the solution at -20◦C until nuclei extraction.
This enabled stabilization of the frozen tissue, providing protection during immediate removal from cold storage, allowing the inhibitors
in the lysis buffer to take effect. This method successfully yielded cDNA libraries, and with additional optimization (0.2% v/v Lucigen
NxGen RNase inhibitor, 0.2% v/v SUPERase-in, 1x Roche Complete protease inhibitor cocktail, 4 mM DTT) (Figure 1D & Figure 2A) the
final optimized EZ protocol resulted in cDNA libraries of sufficient quality.
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Figure 1. Identification of RNA inhibitors in esophageal tissue. (A) RNase 7 expression (NX: normalized expression) across tissue types (consensus
dataset from the Protein Atlas; https://www.proteinatlas.org/). Image credit: Human Protein Atlas. (B) t-Distributed Stochastic Neighbor Embedding of
epithelial cell populations from esophageal tissue analyzed by single-cell RNA sequencing. (C) RNase gene expression in epithelial cell populations
from esophageal tissue analyzed by single-cell RNA sequencing. The size and color of the dot denote the percentage of cells and the average
expression level, respectively. (D) Optimized nuclei isolation protocol for frozen esophageal tissue to mitigate reactivated endogenous RNase activity.
cDNA library electrophoresis traces (high sensitivity DNA chip [Agilent Bioanalyzer] cDNA concentration quantified in fluorescence units) for pooled
nuclei from a sample before, during and after successful protocol optimization.

Using a portion of the same sample stored in RNALater-ICE, the authors evaluated a citric acid (CA)-based isolation method, as
described in Tosti et al. [8,9], where nuclei were isolated from pancreatic specimens, a tissue type with high RNase activity similar to
esophageal tissue [10]. CA has historically been used for nuclei isolation and can improve the separation of nuclei from cytoplasmic
contaminants [11] and yield greater quality RNA owing to its acidic pH and activity as an RNase chelator [12,13]. The tissue was removed
from RNALater-ICE and homogenized in 25 mM citric acid and 0.25 M sucrose, following the protocol outlined in Figure 2B. This CA
nuclei isolation was performed separately (+3months) from the EZ isolation protocol. However, tissue stabilization using RNALater-ICE
is a critical step in stabilizing nuclear RNA, and this step was not varied between methods. Again, the authors found that RNALater-ICE
use yielded larger cDNA libraries with longer fragment lengths, suggesting a higher quality of recovered RNA (Figure 3A & B). Following
sequencing, the resulting libraries from both isolation methods showed similar complexity (EZ median nTranscript/nGene: 496/254;
CA: 483/256) (Figure 3C). The proportion of mitochondrial genes was higher than expected (EZ median: 25.1%; CA: 12.7%), given that
these should be pure nuclei fractions. Previously published nuclei datasets have observed elevated mitochondrial gene expression,
hypothesizing that mitochondria may associate with nuclear membranes [14]. The EZ method displayed approximately the anticipated
proportion of intronic reads (median: 40.9%), given that nuclei contain pre-spliced transcripts. For the CA method, the proportion of
intronic reads was lower than the EZmethod (median: 28.6%), suggesting the presence of mature RNA. It has previously been found that
CA-basedmethodsmay result in nuclei co-isolated with ribosomes or outer nuclear membrane fragments (Figure 3D) [15]. The CA nuclei
showed a significantly higher percentage of reads originating from ribosomal genes (median: 7.6%) than the EZ method (median: 1.7%;
p < 0.001 Mann–Whitney U test), potentially reflecting co-isolation with adherent ribosomes. This is further supported by stratification
of the CA nuclei by percentage of ribosomal reads (Figure 3E & F), identifying two subpopulations of nuclei: those with a ribosomal
gene proportion >8% showing a lower median intronic proportion (14%) and those with <8% ribosomal genes having a higher intronic
proportion (37%). These two populations could reflect nuclei isolated with adherent ribosomes and pure nuclei, respectively.

For analysis, CA and EZ nuclei datasets from the same patient sample were combined (pre-combined analysis in Supplemental Fig-
ure 1). Following clustering with the Seurat package (v3.2.2) [16] using the first 15 principal components of variable gene expression, cell
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Dounce in EZ buffer

Transfer supernatant from the

dounce.

Add additional EZ buffer

incubate for 5 min

500xg for 5 min at 4°C

Discard supernatant.

Resuspend in EZ buffer

Discard supernatant.

Resuspend in NSB

Discard supernatant.

Resuspend in NSB

Count nuclei

45–60 minutes 30 minutes

500xg for 5 min at 4°C

500xg for 5 min at 4°C

700xg for 5 min at 4°C

40 µm filter

Discard supernatant.

Resuspend in modified NSB Discard supernatant. Resuspend in 
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Figure 2. Optimization of nuclei isolation protocols. (A) Flowchart of adaptations to commercial protocol using modified EZ lysis buffer (EZ nuclei lysis
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suspension buffer (1xPBS, 0.01% BSA, 0.2% v/v RNase inhibitor, 1 mM DTT). (B) Citric acid protocol workflow. Citric acid buffer (0.25M sucrose, 25 mM
citric acid), resuspension buffer (25 mM KCl, 3 mM MgCl2, 50 mM Tris-buffer, 0.4 U/μl NxGen RNase inhibitor, 1 mM DTT, 0.4 U/μl SUPERasin).

typeswere identified using lineagemarker genes fromprevious large-scale scRNA-seq esophageal datasets (Figure 4) [17]. Sampleswere
sequenced separately, and batch effects were controlled for by regression of nCount and mitochondrial percentage. The authors were
able to identify 11 cell clusters and one cluster of unassignable low-informative nuclei captures (Figure 4). Two clusters were uniquely
observed in the CA dataset andmarked by high ribosomal gene expression (stratified keratinocyte ribo-high and basal epithelial ribo-high
clusters). The stratified keratinocyte and ribo-high populations clustered closely, with a highly correlated average gene expression profile
between the populations (Pearson’s correlation: 0.89). While there was co-clustering of the EZ- and CA-derived stratified keratinocytes,
the CA-derived basal epithelial cells did not cluster with the primary basal epithelial cluster because of high expression of ribosomal
genes (Figure 4C).

More keratinocytes were recovered by the CA method, particularly stratified keratinocytes (∼14-fold increase in the percentage re-
covered) (Figure 4B), distinguished by their expression of KRT4 (Figure 4C & D). Interestingly, the single-cell dataset shows that RNase7
expression was highest in outer keratinocytes, suggesting that the CA method may result in improved keratinocyte membrane lysis
and/or RNA integrity from nuclei compared with the EZ method. In contrast, the EZ method yielded a greater recovery of fibroblasts
(sixfold) and immune cells (2.5-fold for combined immune populations), with populations expressing marker genes of natural killer
(PTPRC, KLRD1) and macrophage (CD163) lineages (Figure 4C & D). Both methods identified two clusters of vascular smooth muscle
cells (VSMCs) marked by both ACTA2 and MYH11 and discriminated by A2M expression, potentially suggesting an activated subset in-
volved in an inflammatory VSMC response (Figure 4C & D) [18]. Nuclei doublet estimates by DoubletFinder [19] were generally less than
4.8% across most cell populations, bar the outer keratinocyte cluster, where doublet estimates were 77.8% (Figure 4E). This finding was
corroborated by a lower genes/transcript ratio, clearly identifying them as nuclei doublet captures, and the absence of mixed lineage
marker expression suggests these are homotypic doublets. Alternatively, this could be due to keratinocytes beingmore resistant to lysis,
or greater levels of adherent cytoplasm. Both methods provided representation of stromal, immune and vascular cell types known to
make up the architecture of the normal esophagus.

In the datasets, the authors have corroborated identification of the cell types they recovered using markers established in large-scale
scRNA-seq studies of the esophagus. In their hands, the EZ method recovered a greater number of immune and fibroblast cells, while
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Figure 3. Comparison of EZ and citric acid (CA)-isolated nuclei preparations and library quality. (A & B) Representative images (4x magnification) of
DAPI-stained nuclei and cDNA electrophoresis fragment traces for recovered nuclei pools for the (A) modified EZ method and (B) CA method,
respectively. In both nuclei images, a 0.2 μl volume region is shown in both, but with different nuclei loading concentrations. (C) Percentage reads
originating from ribosomal genes for single nuclei isolated by the EZ (median: 1.7%) or CA method (median: 7.6%). Dotted line at 8% representing a
potential divide between nuclei isolated with adherent ribosomes and nuclei isolated alone. (D) Intronic read percentage for populations with > or <8%
ribosomal reads. (E) Diagram demonstrating potential retention of endoplasmic reticulum and ribosomes when nuclei are isolated by the CA method
compared with the EZ method. (F) Transcript count and feature count for single nuclei (points) isolated by the EZ (red violin) or CA method (blue violin).
Log scale. EZ (median transcript count: 496; median gene count: 254). CA (median transcript count: 483; median gene count: 256). Percentage of
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the CAmethod also provided representation of keratinocyte populations, which will be useful for researchers studying these specific cell
types. Further validation studies using additional patient samples to determine the extent of interpatient variability in cell type recoveries
are required, but the results presented here allow direct comparison of cell type recoveries between methods using one patient sample.

The authors’ observation of high mitochondrial genes expression has been observed previously in snRNA-seq datasets [14], support-
ing the assertion that mitochondria, and organelles including ribosomes, may become associated with nuclear membranes. However,
cell viability and sample handling, preservation and differences in storage conditions or time may also be contributing factors, which
the authors were unable to address in full. The localization of organelles may have additional benefits for the CA method. First, nuclei
and attached ribosome sequencing has been shown to facilitate the study of rare cell types that are challenging to analyze by nuclei
sequencing methods alone [20]. Second, the CA method may have utility for studies of RNA transcripts actively undergoing translation.

To facilitate analysis of primary tissues such as the esophagus, it is essential that dissociationmethods are validated, so that cellular
heterogeneity captured across studies can be corroborated. Validated methods that can be used with frozen tissue have advantages
for the retrospective study of archived samples and for facilitating work in laboratories without access to fresh samples. The authors’
protocols have immediate utility in studies of esophageal cancer, a disease with significant unmet clinical need that was previously
challenging to study at the single-cell level. The authors have provided detailed laboratory protocols here: www.protocols.io (dx.doi.org
/10.17504/protocols.io.btm6nk9e; dx.doi.org/10.17504/protocols.io.t9wer7e).
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ABSTRACT
The ability to study the bone microenvironment of failed fracture healing may lead to biomarkers for fracture nonunion. Herein the authors
describe a technique for isolating individual cells suitable for single-cell RNA sequencing analyses from intramedullary canal tissue collected by
reaming during surgery. The purpose was to detail challenges and solutions inherent to the collection and processing of intramedullary canal
tissue samples. The authors then examined single-cell RNA sequencing data from fresh and reanimated samples to demonstrate the feasibility
of this approach for prospective studies.

METHOD SUMMARY
Intramedullary canal tissue is challenging to study directly because of its inaccessibility and heterogeneous composition. In addition, single-
cell RNA sequencing requires high sample purity and cell viability. The authors determined that the critical step required for producing usable
samples for single-cell RNA sequencing from intramedullary canal tissue was collagenase digestion, followed by centrifugation with density
gradient medium (Ficoll).

KEYWORDS:
cell isolation • cryopreservation • fracture • nonunion • single-cell RNA sequencing

Nonunion of lower extremity fractures is a debilitating orthopedic condition. Patients experience prolonged pain, physical disability and
decreased quality of life of the samemagnitude as congestive heart failure [1]. Implicit to lower limb nonunions are long hospital stays and
long-term unemployment, outcomes that are relevant to the public economy [2,3]. A practical definition of nonunion is when a fracture, in
the opinion of the treating physician, has no possibility of healing without further intervention [4]. The overall risk estimate for nonunion
in adults is 1.9% of all fractures, or 500,000 cases annually [5,6]. Clinical risk factors include injury characteristics and host factors,
including age [7], fracture site (e.g., tibia/fibula [5.4%], femur/pelvis [1.3%]) [6], type of injury, open versus closed fracture [8], smoking
status [9] and patient comorbidities [8]. However, the cellular biology of impaired fracture healing remains only marginally understood.

Once identified, nonunion is largely a surgical disease. Frequently, the procedure for nonunion repair involves accessing the in-
tramedullary canal and reaming for implant removal, exchange nailing or obtaining autogenous bone graft. The primary goal of the
present study was to determine the feasibility of collecting human intramedullary canal tissue (ICT) for single-cell RNA sequencing
(scRNA-seq), looking toward improved understanding of cellular mechanisms in fracture repair or biomarkers predictive of failed heal-
ing. To demonstrate the applicability of this technique for downstreamanalyses, the authors first defined a suitable cell isolation protocol,
determined cell viability and then performed scRNA-seq analyses. This is a time-intensive endeavor that involves coordination between
multiple entities (surgeons, laboratory personnel and scRNA-seq core facility). Therefore, a secondary goal was to investigate whether
freezing and subsequent reanimation of samples would allow for scRNA-seq. Taken together, these two goals have allowed the au-
thors to collect, store and process ICT samples for future research. The authors have successfully completed seven additional sample
acquisitions and analyses using the protocol described in this brief report.

Human samples
Deidentified samples of ICT were obtained from three patients. The three patient samples consisted of the following: femur nonunion
sample was ICT from a femoral nonunion undergoing exchange intramedullary nailing for treatment of the nonunion; femur control
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Figure 1. Histology of intramedullary canal tissue. Intramedullary canal tissue (ICT) samples were fixed for 24 h in neutral buffered formalin (10%) and
serially dehydrated in 5, 15 and 30% sucrose–phosphate-buffered saline for 24 h. Samples were embedded in optimal cutting temperature medium,
frozen on dry ice and ultimately sectioned via cryostat at 10-μm thickness. After sectioning, slides were stained with hematoxylin and eosin. Images
were obtained using a Leica DM5000 B microscope, FLUOTAR objectives, DFC310 FX camera and LAS X software. Cells (blue) are surrounded by both
soft tissue (pink) and hard tissue (red), indicating that the ICT obtained from reaming is a complex matrix. Black arrows indicate dense collections of
cells.

Figure 2. Live imaging of cell release by fluorescence microscopy. To troubleshoot and validate the cell isolation procedure, the products were pelleted
and then resuspended and incubated in Hoechst 33342 at 8 mM in Dulbecco’s modified Eagle medium (DMEM) for 5 min. Cells were thereafter washed
once, resuspended in DMEM and examined by microscopy. Images were obtained using a Leica DM5000 B microscope, FLUOTAR objectives, DFC310
FX camera and LAS X software. (A) Representative image of Hoechst-labeled live cells from intramedullary canal tissue sample filtrate without
enzymatic digestion, revealing mostly erythrocytes. (B) After enzymatic digestion, demonstrating the dense mineral debris that contaminates the live
cell pellet. (C) After utilization of both enzymatic digestion and subsequent Ficoll density gradient medium separation. The latter combination
successfully and consistently partitioned the desired fraction of viable cells away from the mineral debris. Scale bars = 20 μm.

sample was from a normal, previously unoperated femur from which autogenous bone graft was obtained for a contralateral femur
nonunion site; and acute tibia fracture sample was collected at the time of intramedullary nail (IMN) fixation. Reaming was performed
using flexible reamers (Zimmer Biomet, IN, USA). For the nonunion sample, the previously placed IMN was removed, and the canal
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was then reamed in preparation for receipt of a new, larger IMN. For the control sample, a standard reamer was passed prior to bone
graft harvest with the Synthes reamer–irrigator–aspirator (DePuy Synthes, PA, USA), with the initial reamings from the standard reamer
constituting the ICT sample. Finally, the acute tibia fracture underwent reaming for standard IMN placement for fracture treatment. In
all cases, ICT was collected from the reamings, immediately placed on ice in 50-ml conical tubes and transferred to the laboratory for
tissue processing. All specimens were from samples routinely collected and discarded at the time of surgery, and all were deidentified
for this investigation.

Sample preparation
The necessary supplies and reagents are shown in the reagents and materials in the protocol template. The cell isolation protocol from
the ICT went through a series of trial and error revisions to obtain suitable live cell yield and minimize contaminating mineral debris. The
authors’ goal was to obtain a protocol that would allow cell isolation from ICT and pass scRNA-seq quality control (QC). The primary
error in the design of the initial protocol was due to the assumption that cells would be organized in an easily dispersible matrix, as one
would encounter with a typical bone marrow aspiration sample [10]. However, after fixing, staining and observing the ICT samples via
microscopy (Figure 1), it became evident that themajority of cellswere unable to be extracted by physicalmanipulation alone. The second
major obstacle was partitioning viable cells away from contaminating mineral debris, which is voluminous and an inherent byproduct
of the reaming procedure. Ultimately, a collagenase digestion followed by Ficoll density gradient separation liberated single cells and
allowed for the separation of mineral debris from viable cells. Figure 2A & B displays the cellular endpoints from early failed isolations,
and Figure 2C reveals the product of the final successful protocol. The final protocol, as described, was used to isolate cells from ICT for
all three patient samples. Each of the three samples (acute tibia fracture, femur control and femur nonunion) was divided into samples
that were freshly analyzed and samples frozen at -80◦C for greater than 3 weeks. The frozen samples were then thawed, reanimated
and analyzed again. Thus, the same isolation protocol was used for each of the three samples (both fresh and frozen).

The number of cells expected for the 10x Chromium system (10x Genomics, CA, USA) varies from 100 to 10,000, depending on cell
availability and the need for single-cell gene expression analysis. The Chromium system requires 60 μl of a clean single-cell suspension
at 700–1200 cells/μl. The definition of clean single-cell suspension is as follows: approximately 90% viability; zero to minimal cell
aggregation, particularly doublets and triplets; minimal cell debris; and final cell suspension washed at least three times. Often, when
obtaining a sample from a reaming procedure, the initial pellet is very large but consists almost entirely of mineral debris. In the later
steps, the pellet is often very small and barely visible. Thus, pellet size (or absence thereof) is not a criterion for successful isolation. If
the cell pellet is not visible, the final cell count by hemocytometer is used to ensure adequate cell number. In the fresh state, the number
of cells that passed QC was 3156, 4515 and 7770 for the acute tibia fracture, femur control and femur nonunion samples, respectively.
Following reanimation, the number of cells that passed QC was 6201, 7204 and 13,006 for the acute tibia fracture, femur control and
femur nonunion samples, respectively.

scRNA-seq & bioinformatics
To coordinate the services of a multidepartment core facility with the time-intensive sample preparation and challenges inherent to
surgical scheduling, it is ideal to be able to freeze samples after isolation for later analysis. To investigate whether the freeze/thaw
process compromised cell viability or impaired downstream analyses, the authors compared samples analyzed on the day of collection
(never frozen) with the same sample stored for greater than 3 weeks at -80◦C and subsequently thawed per the recommendations of
10x Genomics [11]. Cell viability was determined manually by the core facility via trypan blue and hemocytometer prior to downstream
analysis. The fresh versus reanimated cell viability was 84 versus 78% for femur nonunion, 91 versus 90% for the acute fracture and
92 versus 61% for the control sample. Of note, because of the lower percentage of viable cells after freezing the control sample, the
core utilized a dead cell removal kit (Miltenyi Biotec, Auburn, CA, USA), which increased viability to 93% in the control sample used for
scRNA-seq. Each sample/cell suspension was processed according to the manufacturer’s instructions, as previously described [12,13].
Briefly, each sample was loaded onto a Chromium chip (10x Genomics). The 10x V3 single-cell reagent kit (10x Genomics) was used to
generate single-cell gel beads for cDNA synthesis. An Agilent 2100 Bioanalyzer (Agilent, CA, USA) was used to assess the subsequent
Illumina libraries, which were then sequenced via an Illumina NovaSeq 6000 (Illumina, CA, USA).

The data were analyzed with Cell Ranger 3.0.2 [14], with slight modifications from previous reports [12,13]. Briefly, FASTQ files were
aligned to the human reference genome GRCh38. The aligned reads were traced back to individual cells, and gene expression was quan-
tified based on the number of unique molecular indexes detected in each cell. R package Seurat 3.1.0 [15] with RStudio 1.1.453 and R
3.5.1 was used to further analyze the filtered gene–cell barcode matrices. Exclusion criteria were genes detected in less than five cells,
cells with less than 200 genes, cells with extremely high or low numbers of detected genes/unique molecular identifiers and cells with
high percentages of mitochondrial reads. The function ’is Outlier’ from R package scater [16] was used in this process of data clean-up.
Following exclusion as described, the resultant data were normalized with the NormalizeData function in Seurat. FindIntegrationAnchors
and IntegrateData from Seurat 3.1.0 integrated each pair of fresh and reanimated samples. The integrated data were scaled and principal
component analysis was performed. FindNeighbors and FindClusters were used to identify clusters. FindConservedMarkers was sub-
sequently used to identify canonical cell type marker genes. The cell clusters were visualized using the UniformManifold Approximation
and Projection plots. R package ggplot2 [17] was used to plot the percentage of cells in each cluster.
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Figure 3. Comparison of single-cell RNA sequencing cell clusters in fresh versus reanimated samples. Uniform manifold approximation and projection
comparisons of scRNA-seq analyses of the three pairs of fresh and reanimated samples. Each dot represents a cell, and each number/color represents
clusters of similar cell types determined by gene expression profile, referenced to a standard data set. The figures demonstrate similar clustering in the
samples when analyzed fresh or after reanimation. (A) Control femur sample, fresh; (B) control femur sample, reanimated; (C) nonunion femur sample,
fresh; (D) nonunion femur sample, reanimated; (E) acute tibia sample, fresh; (F) acute tibia sample, reanimated.
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Figure 4. Comparison of cell percentages in each cluster in fresh versus reanimated samples. The values along the x- and y-axes are the percentages
of either fresh (x-axis) or reanimated (y-axis) samples that a particular cluster represents. A cluster that has an identical percentage of cells
(comparing frozen and reanimated samples) would be located along the diagonal hashed line. A cluster with a large deviation of percentages between
the two samples would appear as farther away from the diagonal line. Most of the dots are distributed close to the line, suggesting that freezing had
minimal effect on the proportion of cells from a cluster in the overall population. (A) Control femur sample, (B) nonunion femur sample and (C) acute
tibia sample.

Figure 3 compares the UniformManifold Approximation and Projection plots for clusters between the fresh and reanimated samples,
demonstrating relative stability of the clusters. Figure 4 shows that the percentage of cells from each cluster in the overall cell population
was minimally affected by reanimation and close to the line of identity. Figure 5 uses violin plots to illustrate frequency distributions for
the number of genes expressed in each cell. The black (fresh) and gray (reanimated) plots illustrate the distributionwithin each condition.
The main finding of these data was that reanimation passed scRNA-seq QC and did not prevent subsequent analyses.

Improving our understanding of failed fracture healing will have a profound effect on the diagnosis and treatment of nonunion. One
potential avenue of inquiry is studying scRNA-seq of ICT. In this article, the authors have described a novel, successful and repeatable
operating room-to-benchtop process for the isolation of single cells from ICT collected at the time of reaming during nonunion repair
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and acute fracture treatment. Through a series of adjustments, the authors successfully isolated single cells of adequate quality and
quantity for scRNA-seq analyses. Most importantly, the authors showed that cryogenic storage of samples is possible, thereby facilitat-
ing the feasibility of this translational research technique. To the authors’ knowledge, there are no published protocols describing the
isolation of cells from ICT obtained by reaming that are suitable for scRNA-seq analyses. The authors acknowledge that this protocol
may not yet be optimal and welcome further investigation. Additionally, there remain aspects of the comparison between fresh and
reanimated samples that are underdeveloped. However, this technique article demonstrates the ability to isolate cells from ICT suitable
for scRNA-seq. The authors also acknowledge that reanimated samples may not fully reflect fresh samples; however, the differences
appear minimal. Pragmatism in doing these types of experiments is a relevant concern. Although some scientific questions using this
protocol may require fresh samples, others may be answerable with frozen samples. The authors’ protocol shows that cells passing
scRNA-seq QC can be obtained from both types of samples.

Future perspective
This communication provides a protocol for isolating cells from ICT suitable for scRNA-seq analyses. Using this protocol, investigation
of cell types in each cluster or gene expression differences between nonunions and controls may yield insight into, or biomarkers for,
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failed fracture healing. Ongoing research in our laboratory using this methodology is examining differences between multiple control
and nonunion patients.

Executive summary

• Analysis of unique cellular characteristics of intramedullary canal tissue from fracture nonunion patients may provide critical insight into
the etiology of, or biomarkers for, failed fracture healing.

• The authors report the feasibility of collecting, processing and analyzing intramedullary canal tissue specimens using single-cell RNA
sequencing in both fresh and reanimated conditions.
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ABSTRACT
IgA nephropathy (IgAN) is an autoimmune disease characterized by renal glomerular immunodeposits enriched for galactose-deficient IgA1
(Gd-IgA1; autoantigen) with the corresponding IgG autoantibodies. Despite the known contribution of Gd-IgA1 to IgAN, little is known concern-
ing IgA1-secreting subpopulations responsible for autoantigen production. The goal of this study is to identify IgA1-secreting and membrane
subpopulations from single-cell transcriptomic analysis. We developed a novel single-cell analytics workflow to discern cells expressing IgA1
secreted isoform or membrane-bound isoform. Multiple approaches were compared to assess immunoglobulin-isotype identity in single cells,
andmultiple immunoglobulin heavy-chain genes expressed in the same cells were found. To better identify specific immunoglobulin heavy-chain
transcripts, wemerged a software platform called Alteryx with the existing single-cell R toolkit programSeurat. This process allowed for improved
calls on IgA1-secreting subpopulations based on secreting versus membrane splice-variant expression levels.

KEYWORDS:
Alteryx secreting • bioinformatics • IgA nephropathy • immunoglobulin • membrane • scRNA-seq • seurat

IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide [1]. This autoimmune disease is characterized by
elevated blood levels of abnormally glycosylated IgA1 (galactose-deficient in some O-glycans; Gd-IgA1). Identifying IgA1-secreting sub-
populations responsible for production of Gd-IgA1, and their unique transcriptional profile, would help identify critical mechanisms in
the pathobiology of IgAN. To identify transcriptional mechanisms of Gd-IgA1 production in IgA1-secreting subpopulations, we used a
previously generated biobank of Epstein–Barr virus (EBV)-immortalized B cells from peripheral blood of IgAN patients and healthy con-
trols [2–6].

The aberrant glycosylation of Gd-IgA1 is related to abnormal expression and activity of key glycosyltransferases [2,3,5]. To assess
mechanisms that drive abnormal glycosylation of IgA1 in cells from IgAN patients versus controls, we used high-throughput single-cell
RNA sequencing (scRNA-seq) to map differential transcriptional responses in IgA1-secreting subpopulations. To identify IgA1-secreting
cells, we used the IGHA1 secreted splice variant. The splice variant is located on the 3′ end of the transcript, but the VDJ clonality – also
of interest when discerning immunoglobulin function – is on the 5′ end of the gene. Thus we approached the analysis using scRNA-seq
kits that targeted either the 3′ or the 5′ end (Figure 1). The purpose of this study was to develop a bioinformatic process to identify
individual cells that have the IgA1-secreting isoform, the IgA1 membrane isoform or both isoforms; however, during our analysis of these
IgA1 subpopulations, we found significant expression of other immunoglobulin heavy chains in the same cells, necessitating a process
to identify which isotype class each cell should be called for.

This problem of needing sequence identification at both ends of the transcript is well recognized, and a recent publication has looked
at using 3′ end reverse transcription with targeted capture and nanopore sequencing [7]. This study used both whole-transcriptome
analysis from the 3′ end and long-read sequencing via Oxford Nanopore technology. The advantage was the availability of both whole-
cell transcriptome and VDJ sequences; however, the process required significantly more PCR amplification upstream for hybridization
capture, which can bias expression levels, and the nanopore sequencing technology generally has low recovery rates [7].

For our studies we needed an analysis process that could be hypothesis-driven, allowing for specific subpopulations determined a
priori, and then we needed to perform both hypothesis testing and unbiased analysis on these subpopulations. For this, we turned to
Alteryx, a software package used to handle large databases that allows users to generate unique workflows to quickly analyze data for
gene expression profiles across all their datasets. Coupled with the R single-cell package ‘Seurat’, we generated the curated data sets
from the EBV-immortalized cells derived from human peripheral blood B cells [8].
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Figure 1. Overall scheme for data curation and analysis. (A) Multiple kits targeting the 3′ or 5′ end of mRNA transcripts were used. The 5′ VDJ kit was
used as well to selectively amplify transcripts for sequencing the VDJ region. Sequencing data were aligned in Cell Ranger 3.1, curated and normalized
in Seurat, then subgrouped in Alteryx. Cells were grouped by isotype heavy chain, followed by IGHA1 secretory or membrane form (s/m). The bottom
diagram depicts regions of the IgA1 transcript, from the 3′ to the 5′ end, with the secretory and membrane splice variant on the 3′ end. (B)
IGHA1s-expressing (IgA1s-secreting isoform) cells identified from the workflow were subject to PCA analysis.
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Analysis of the raw and curated data from Seurat and Alteryx indicated that EBV-immortalized cells express multiple isotype classes
of heavy chain genes; however, due to allelic exclusion during isotype switching, this is not biologically possible [9]. After analyzing the
distribution profiles of expression of heavy chain isotypes in each cell, we defined an approach tomakemore appropriate calls of isotype
heavy chains. With this process, wemodified the hg38 reference database to include IGHA1 splice variants for secretory andmembrane-
bound antibodies. This approach enabled a more accurate assessment of the immunoglobulin isotype calls and identification of critical
IgA1-secreting subpopulations.

Materials & methods
A previously established biobank of EBV-immortalized peripheral blood mononuclear cells (PBMCs) was used [2,4–6]. Briefly, PBMCs
isolated from patients with IgAN or other renal disease and healthy controls underwent EBV immortalization, a process that only targets
B cells. For the purposes of this study, we only used IgAN donors, but immortalized B cells from healthy controls exhibit similar im-
munoglobulin heavy chain patterns [2]. Heterogenic mixtures (populations secreting multiple isotypes of immunoglobulin heavy chain)
of B cells were grown in RPMI 1640 medium with 10% fetal bovine serum at 5% CO2 [2,4,6]. Cells were centrifuged at 4◦C, stored on ice
for 30 min and, for the purpose of removing clumped and dead cells, were isolated as single live cells by using forward and side scatter
in an Aria II flow cytometer before single-cell transcriptomic analysis. B cells were assessed using 10× Genomics 3′ transcriptome (v2.0,
n = 4) and 5′ VDJ and GEX transcriptome kits (v1.1, n = 5), with target cell numbers of 3000 [10,11]. The target cell number of 3000 was
used as recommended by 10× Genomics and See et al. who found that approximately 2000 cells were sufficient to target isotype sub-
populations [12]. Transcripts were sequenced on an Illumina NextSeq 500, at 50,000 reads per cell. The sequences were called using 10×
Genomics Cell Ranger v3.1. In addition to using the hg38 reference genome, splice variants for IGHA1 secreted (ENSG00000282633.1)
and membrane-bound (ENSG00000211895.5) (IgHA1s and IgHA1m) were added to the reference genome. Raw data were curated and
normalized using Seurat v3.0 and analyzed using Alteryx Designer x64 C© in the following manner (Figure 1; example workflow in Supple-
mentary Figure 1) [13]. Using the 5′ VDJ and GEX 10× Genomics kit, we identified antibody isotypes from the 5′ VDJ results and imported
those barcodes into the 5′ GEX data for further comparison of immunoglobulin heavy chain calls.

Matrix data from Cell Ranger were read into Seurat v3.0 using the open source RStudio (v1.2.1335) [14,15]. Seurat was used to curate
and normalize the data, using the instructions listed on the website (https://satijalab.org/seurat/v3.0/pbmc3k tutorial.html):

• The Seurat object was created, and mitochondrial percentage assessed for each cell.
• Violin plots were created to visualize outliers and distribution characteristics. The EBV-immortalized cells are larger than primary B

cells and have a higher mitochondrial content and gene set than primary cells (for visualization of primary PBMCs, see Vignettes
in [14]). Thus for quality control (QC), minimum and maximum gene features were set at 1000/5000, and mitochondrial percentage at
<20% (Figure 2 & Supplementary Figure 2).

• Data were then normalized using the LogNormalize function at 10,000.
• Normalized data from the Seurat object were copied into a new matrix and saved as an .rds file for future analysis. The following

commands allow pulling out the data from the Seurat object and into an .rds file for further analysis by Alteryx:

◦ normdataset <- pbmc[[“RNA”]]@data
◦ normnames <- normdataset@Dimnames
◦ normdata <- normdataset@x
◦ normmatrix <- matrix(normdata, ncol = “number of cells in object”, nrow = “number of gene in object”, dim-

names = list(normnames[[1]], normnames[[2]]), byrow = TRUE)
◦ normgenenames <- normnames [[1]].

• Both ‘normmatrix’ and ‘normgenenames’ were saved as .rds files.

To compare isotype class calls in Seurat and in our workflow, we identified a subset of IGHA1s-containing cells in Seurat using the
following commands only after the Seurat object had been normalized and scaled using either the standard workflow or ‘SCTransform’
(for SCTransform we also regressed out mitochondrial percentage as suggested):

• IGHA1s sub <- subset(‘SeuratObject’, subset = IGHA1s >0)
• WhichCells(IGHA1s sub)

The cell IDs were then imported into our Alteryx workflow and used to isolate those specific cells identified by Seurat as IGHA1s
expressers. All immunoglobulin heavy chain isotypes for each cell were assessed.

To input the .rds files into Alteryx, we set up a workflow using the R script tool, with the following commands code:

• dat <- as.data.frame(readRDS(“C:/filename/normmatrix.rds”))
• write.Alteryx(dat, 1)
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Figure 2. Mitochondrial percentage in EBV-immortalized cells before and after curation. Generally, these cells have higher expression of mitochondrial
genes than their primary counterparts.

• dat2 <- as.data.frame(readRDS(“C:/filename/normgenenames.rds”))
• write.Alteryx(dat2, 2)

Using the Output Data tool, we copied the new files in Alteryx database format (.yxdb) to the appropriate file.
Using Alteryx, we can query and categorize the data matrices from Seurat to find and analyze subpopulations of cells based on their

gene expression profiles. This is done by creating workflows that employ a suite of tools designed to manage large datasets. Single-
isotype heavy chain-expressing cells were subgrouped based on their expression isotype (IGHM, IGHG1 etc.), and IGHA1 specifically into
IGHA1s and IGHA1m subpopulations. Once specific subpopulations were grouped, either analysis was performed in Alteryx or the data
were exported into a matrix table for further processing in R or other statistics packages.
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Figure 3. IGHA1s expression across all cells in two different samples. One sample of immortalized B cells was analyzed using a 5′ transcriptome kit
(dashed line, 2326 cells), and the other using a 3′ transcriptome kit (solid line, 3233 cells). The Y-axis represents the number of cells that, based on the
x-axis IgHA1s expression level, expressed a specific number of transcripts.

The relative homology of IGHA1s and IGHG1 was assessed using cDNA transcripts from Ensembl (www.eseast.ensembl.org) of
IGHA1 secretory (ENST00000633714.1/ ENSG00000282633.1) and IGHG1-201/202/203 (ENST00000390542.6/ ENST00000390548.6/

ENST00000390549.6). Additional cDNA sequences used for comparison are: IGHG2-202 (ENST00000641095.1), IGHG3-202
(ENST00000641136.1), IGHG4-202 (ENST00000641978.1) and IGHM-202 (ENST00000637539.2).

Results & discussion
Immortalized B cells and IgA1-secreting cell lines derived from peripheral blood of patients with IgAN and healthy controls were used
as model systems for mechanistic studies of Gd-IgA1 production [2]. EBV immortalization targets cells with CD21 receptors and thus
creates a heterogenic mixture of B cells and immunoglobulin-secreting cells [16]. A mature B cell can be activated by a specific antigen
and various cytokines to undergo a class switch from IgM/IgD to express other antibodies (IgA1/IgA2/IgG1-4/IgE). Once this occurs, the
plasma cell or memory B cell does not produce any other antibody isotype [17]. With this in mind, we compared the expression of IGHA1s
across all cells in two tested samples (Figure 3). As expected, we saw a range of expression levels, but we did not expect to see the
IGHA1s gene expressed in all cells. As both samples were from a mixture of B cells that also secrete IgG and/or IgM (data not shown),
we can assume that some or even a majority of the gene calls for IGHA1s were incorrect, and that most of the IGHA1s calls constituted
background noise. These observations appear contradictory to the conventional doctrine of ‘one B cell, one antibody’; however, another
publication found similar results [18]. Using the same 10×Genomics 5′ VDGandGEX platform, Shi et al. found that a significant number of
B cells (∼10–40%) at various stages of differentiation express multiple immunoglobulin heavy chain transcripts [18]. Although the study
did not assess the secretory sequence of the immunoglobulin heavy chain transcripts, the results were consistent with our findings.

To better elucidate the potential for confounding isotype heavy chain calls in the same cell, we compared IGHA1s expression across
all cells with the ratio of other heavy chain isotypes (Figure 4). Figure 4A shows the relationship between IGHA1s and IGHG1 expression
in individual cells from a heterogenic B cell population assessed with a 5′ kit. This figure shows that, while there is some variability, as
cells increase IGHA1s expression the relative amount of IGHG1 also expressed appears stable. Figure 4B, a close-up panel of Figure 4A,
highlights that the majority of cells expressing IGHA1s are low expressers and likely constitute background noise. Figure 4C shows the
exact same cells as in Figure 4A & B, but includes information on expression of all other heavy chain isotypes for every cell. These data
indicate that across all cells, there will be some level of expression of multiple heavy chain isotypes, confounding the ability to make an
isotype-specific designation because the ratio of other isotype heavy chains is variable. This phenomenon is consistent across multiple
cell lines, the only difference being the variability of contaminating heavy chain isotypes in different samples (Supplementary Figure
3A–C). We employed the 5′ VDJ-GEX kit from 10× Genomics, which sequences the VDJ transcripts in the same cells along with 5′ GEX
transcriptomes. Using the Loupe Browser from 10× Genomics, we incorporated the 5′ VDJ data into the 5′ GEX transcriptome data and
exported the cell barcode IDs specific to IGHA1-positive cell calls based on the VDJ analysis [19]. We used this subpopulation of cells to
compare IGHA1s and IGHG1 expression (Figure 5). Although the pattern of IGHG1 expression to IGHA1s was slightly different (the cells
in Figure 5 are the same cells as in Figure 4), we still found significant IGHG1 expression across a significant number of moderate- to
high-expressing IGHA1s cells using the 5′ VDJ scRNA-seq kit. While the power of this approach can yield sequence data on the VDJ
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Figure 4. IGHA1s and all other isotype heavy chain expression levels were assessed across all cells in a sample of immortalized B cells. (A) IGHA1s
expression per cell compared with IGHG1 expression for those same cells. The Y-axis represents the IGHA1s and IGHG1 expression level. (B) Close-up
of the bottom left panel of (A), showing that most of the cells in this heterogenic population have very low IGHA1s and IGHG1 expression. (C) IGHA1s
expression per cell compared with all other heavy chain isotype expression in those same cells. The Y-axis represents the IGHA1s expression level and
the average IGH expression level for every other isotype. Numbers on the X-axis are the number of cells expressing IGHA1s at that specific level. Total
cells = 2326.
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regions when combined with transcriptome profiling, the limitation is the poor coverage at the 3′ end where the secreted/membrane
sequence is located.

Structural homology can be an issue in overlapping calls of similar sequences, but there is limited alignment similarity in the im-
munoglobin heavy chains [20]. Given that we were observing expression of multiple heavy chain isotypes in the same cell, the simplest
answer is that we could be seeing doublets in our capture (i.e., two cells in one droplet), or another mRNA capture overlap from lysed
cells. Therefore we checked whether the initial QC steps performed in Seurat to remove data outliers were sufficient. We compared our
normal QC workflow with another one with a lower nFeature (3500) cutoff, a lower nFeature and nCount (15,000) and the new SCTrans-
form function in Seurat (VlnPlots shown in Supplementary Figure 4). We found that these modified workflows did not affect the multiple
isotype IGH calls in our cells (Supplementary Figure 5).

Given the overlap in calls among the different heavy chain isotypes, we needed to find the best route to assign the appropriate
antibody isotype. A previous publication analyzing transcriptome and VDJ clonality in B cells from breast cancer tissue found similar
issues with assigning isotype class and used a cut-off value of tenfold higher than the next highest expressing heavy chain isotype in
that cell [21]. However, because each cell line likely has a unique proportion of immunoglobulin producers in the total population, using
a predetermined expression cutoff would not work well. Using IGHA1s, we mapped the relative ratio of its expression to the next highest
expressed heavy chain isotype (IGH) for each cell (Figure 6).We can calculate this relationship using the slope of the IGHA1s/IGH, and this
can help determine whether the informatic calls for a positive IGHA1s cell are improving. It is important to note that the expression levels
have been log-normalized, so biological expression differences are much larger. Although we found a significant positive correlation
between cells with higher IGHA1s expression and an increased ratio of IGHA1s/IGH expression, we do not believe we should use a simple
expression cut-off measurement to make appropriate isotype calls, because some cells with IGHA1s expression had low IGHA1s/IGH
expression ratios (Figure 6). This phenomenon held true for three other cell lines assessed (Supplementary Figure 6).

Because we found consistent overlap in the heavy chain isotype calls in the same cell, we assessed expression across multiple
heterogenic cell lines from various donors to determine what may be an appropriate ratio to make for a cell heavy chain isotype call.
The ratio of IGHA1s/next highest IGH expressed was calculated for each cell across multiple cell lines and transcriptome PCR kits (3′

transcriptome, 5′ GEX and 5′ VDJ). The number of cells that met specific IGHA1s/IGH ratio minimums were tabulated and presented
as a percentage of total population (ratios >2, >3, >4; Table 1). Additionally, the average IGHA1s/IGH ratio and standard deviation (SD)
were calculated for the total population and used to find cells that fell within one or two SD higher than the average ratio; these were
presented as a percentage of the total population (1SD, 2SD; Table 1). As shown in Table 1, there were substantial differences between
cell lines in the amount of IGHA1s expression, but also in the relationship between the SD percentage and the hard ratio cutoff numbers.
We did not see a consistent relationship between 1SD or 2SD cell numbers and the hard cutoff ratio numbers (>2, >3, >4), suggesting
that biological variability may confound any attempt to assign isotype based on SD.

To assess the overlap of IGHA1 secreted and membrane splice variants, ratios for IGHA1s/IGHA1m were calculated for every cell
(Figure 7). A pattern similar to that seen in Figure 6 was observed, but with higher ratios associating with higher expression of IGHA1s.
A significant difference between IGHA1s/m splice variants and IGHA1s and other IGH expression is the substantially higher slope value
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Figure 6. Plot of IGHA1s/IGH versus IGHA1s expression. To determine the relationship of IGHA1s expression to other immunoglobulin heavy chains in
the same cell, we calculated the slope of IGHA1s expression versus the ratio of IGHA1s/next highest isotype heavy chain expression in the same cell
using the 5′ GEX transcript data. For each cell, all immunoglobulin heavy chain expressions were assessed, and the ratio of IGHA1s to the highest or
next-highest immunoglobulin heavy chain (IGHG1/2/3/4, IGHM, IGHD, IGHD) was calculated. Total number of cells = 2218. Statistical significance was
calculated using analysis of variance regression.

Table 1. Percentage of cells out of the total population falling within a specific IGHA1s/next-highest isotype heavy chain ex-
pression ratio.
5′ GEX Percentage of total population, IGHA1s/IGH ratio IGHA1s/IGH ratio

>2 >3 >4 1SD† 2SD† Avg SD

Cell line A 1.76 0.54 0.23 11.45 4.24 0.48 0.49

Cell line B 4.26 1.60 0.70 9.46 4.46 0.63 0.67

Cell line C 6.96 3.19 1.84 8.21 3.77 0.86 0.91

5′ VDJ

Cell line A 0.45 0.09 0.09 2.93 1.26 0.46 0.48

Cell line B 3.36 1.31 0.66 7.41 3.48 0.62 0.67

Cell line C 0.48 0.14 0.00 1.21 0.48 0.80 0.64

3′ GEX

Cell line D 8.02 3.66 1.68 9.93 4.50 0.85 0.87

Cell line E 4.06 1.59 0.77 9.72 4.26 0.69 0.63

Cell line F 9.84 4.95 2.72 9.84 4.58 0.93 1.07

Cell line G 3.23 1.44 0.58 9.09 3.69 0.60 0.63

Three cell lines (A, B and C) were analyzed using two different kits: 5′ GEX and 5′ VDJ. Four cell lines (D, E, F and G) were analyzed using the 3′ GEX kit. Each cell was analyzed for
its IGHA1s/IGH ratio using the highest other expressing immunoglobulin heavy chain in that cell. The total number of cells meeting the ratio criteria of >2, >3 and >4 were added
up and presented as a percentage of the total population. The average IGHA1s/IGH ratio for all the cells in the population was calculated, as well as the SD of the total population
(right-hand column). These were used to calculate how many cells had IGHA1s/IGH ratios higher than one or two SD above the average.
†1 or 2 SD higher than the average ratio (Avg + 1*SD or Avg + 2*SD).
Avg: Average; IGH: Immunoglobulin heavy chain isotype; IGHA1s: IgA1-secreting; SD: Standard deviation.

for IGHA1s/IGHA1m ratios (1.95 vs 0.68; Figures 6 & 7). It is unclear whether this greater specificity in calls for IGHA1s versus IGHA1m
versus delineation from other IGH has a technical or biological underpinning. As shown in Table 2, the percentage of cells with high ratios
of IGHA1s/IGHA1m was substantially greater than the comparisons shown in Table 1. This observation further supports the idea that
making the call between IGHA1s and IGHA1m splice variants is easier than for alternative IGH expressers when comparing with IGHA1s.
However, while most antibody-secreting cells do not express cell-surface B cell receptor, there are data suggesting that some antibody-
secreting cells have an active B cell receptor [22]. This means that there will be subpopulations of cells that are only IgA1 secretors,
some that are only IgA1 presenters and some that are both.

Screening for only cells that have a ratio >2 of IGHA1s/IGH, we calculated the IGHA1s/IGHA1m ratio and plotted against IGHA1s
expression level. This approach provided amechanism to screen cells for IGHA1s specificity versus other IGH expressers and determine
the splice variants for IGHA1 secretion, membrane or both within a cell. Figure 8A shows the relationship between IGHA1s/IGHA1m in
cells where the IGHA1s expression ratio was >2 compared with expression of all other IGH isotypes. The slope (and ratios) in Figure 8A
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Figure 7. Plot of IGHA1s/IGHA1m versus IGHA1s expression. To determine the relationship of IGHA1s expression to IGHA1m in the same cell we
calculated the slope of IGHA1s/IGHA1m versus IGHA1s expression. IGHA1s and IGHA1m expression and their ratios in the same cell were calculated
from 5′ GEX transcript data. For each cell, IGHA1s and IGHA1m expressions were assessed, and the ratio of the two was calculated. Total number of
cells = 2218. Statistical significance was calculated using analysis of variance regression.

Table 2. Percentage of cells out of the total population falling within a specific IGHA1s/IGHA1m ratio.
5′ GEX Percentage of total population, IGHA1s/IGHA1m IGHA1s/IGHA1m ratio

>2 >3 >4 1SD† 2SD† Avg SD

Cell line A 23.22 11.99 4.82 12.17 4.10 0.48 0.49

Cell line B 16.99 10.81 5.94 9.05 4.50 0.63 0.67

Cell line C 56.62 47.20 20.24 9.95 3.29 0.86 0.91

5′ VDJ

Cell line A 6.45 3.25 1.35 3.43 1.22 0.46 0.48

Cell line B 13.55 8.56 4.67 8.56 3.81 0.62 0.67

Cell line C 3.96 3.19 1.35 0.72 0.24 0.80 0.64

3′ GEX

Cell line D 20.09 9.58 5.14 33.71 4.59 0.85 0.87

Cell line E 19.07 7.42 3.92 10.74 4.55 0.69 0.63

Cell line F 16.08 8.23 4.83 9.93 4.83 0.93 1.07

Cell line G 19.94 10.97 6.14 9.92 4.30 0.60 0.63

Three cell lines (A, B and C) were analyzed from two different kits, 5′ GEX and 5′ VDJ. Four cell lines (D, E, F and G) were analyzed from the 3′ GEX kit. Each cell was analyzed for
its IGHA1s/IGHA1m ratio. The total number of cells meeting the ratio criteria of >2, >3 and >4 were added up and presented as a percentage of the total population. The average
IGHA1s/IGHA1m ratio for all the cells in the population was calculated, as well as the SD of the total population (right-hand column). These were used to calculate how many cells
had an IGHA1s/IGHA1m ratio higher than one or two SD above the average.
†1 or 2 SD higher than the average ratio (Avg + 1*SD or Avg + 2*SD).
Avg: Average; IGHA1m: IgA1 membrane-bound; IGHA1s: IgA1-secreting; SD: Standard deviation.

is significantly higher than the slope in the total cell population in IGHA1s/IGHA1m analysis (Figure 7A), indicating that selecting for lower
background of other non-IGHA1 IGH transcripts can increase the specificity for IGHA1s-expressing cells. Figure 8B shows the relationship
of IGHA1s to all other IGH isotypes expressed in the same cell after screening for a ratio >2. This workflow compares well for isotype
specificity (IGHA1s in this case) when viewed against the overall isotype overlap in Figure 4C & Figure 6.

An alternate workflow to assess splice variants at the 3′ end using nanopore technology has also been employed with the 10× Ge-
nomics 3′ kit. The cDNA was split for gene expression analysis and whole sequencing of antibody genes, providing significant coverage
on the 3′ end for secretion versus membrane delineation. This approach requires both nanopore and next-generation sequencing tech-
nologies and has a lower recovery of cell barcodes, but could potentially be used alongside a standard 3′ gene expression workflow [7].

Using a combination of R tools to curate the data and Alteryx to visualize and subcategorize cell populations, we can better identify
critical IgA1-producing cells with more accurate isotype calls. With this bioinformatic and single-cell transcriptome approach, we can
cast a broader net to assess heterogenic populations of IgA1-secreting cells using complex mixtures of immortalized as well as primary
B cells.
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Figure 8. Cells were analyzed for IGHA1s/IGH chain expression ratios, as depicted in Figure 6 and Table 1, and only cells that had a ratio >2 were used.
Those cells were then assessed for IGHA1s/IGHA1m expression ratios and compared with all other IGH isotypes. (A) IGHA1s expression level compared
with IGHA1s/IGHA1m ratio for each cell. The x-axis is the IGHA1s expression level for each cell and the y-axis is the ratio of IGHA1s/IGHA1m expression
level. (B) IGHA1s expression level compared with all other IGH isotypes. The X-axis is the number of cells at a specific IGHA1s expression level and the
y-axis shows IGHA1s and IGH isotype expression level. Both panels depict Cell Line A analysis, consisting of 39 out of 2326 cells that met the criteria of
>2 ratio versus the next-highest IGH expression level. Statistical significance was calculated using analysis of variance regression.

Future perspective
Future work in primary PBMCs is necessary to assess this bioinformatic workflow in nonimmortalized cells to address potential tran-
scriptional variables associated with the immortalization process. EBV does not infect and immortalize all the B cells in a PBMC pool;
thus the immortalized pool only provides a random snapshot of some of the B cells, further highlighting the need for primary cell work.
Additionally, to help validate class identification, we will combine immunoglobulin cell-surface detection and single-cell transcriptomics
when assessing B cells. One of these technologies used by 10× Genomics is CITE-seq (Cellular Indexing and Transcriptomes and Epi-
topes), which combines nucleotide-tagged antibodies for cell-surface targets [23]. This work will help to classify some B cells but may
be problematic in those antibody-secreting cells that do not present with cell-surface antibodies. This limitation can be addressed by
using known subcloned B cells lines that secrete a single isotype.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/suppl/10.
2144/btn-2020-0044
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Shankar Srinivas (Professor of Developmental Biology, University of Oxford, UK; left)
completed a BSc in Nizam College (Hyderabad, India) before joining the group of
Frank Costantini at Columbia University (NY, USA), where he received a PhD for
work on kidney development. He then moved to the National Institute for Medical
Research (London, UK), as an HFSPO fellow in the groups of Rosa Beddington and
Jim Smith. Here, he pioneered the use of time-lapse microscopy of early mouse
embryos to study anterior patterning. He established his own independent group at
the University of Oxford in 2004, where he now uses mouse and human embryos to
understand the formation of the anterior-posterior axis, gastrulation and early
cardiogenesis.

Using single-cell approaches to investigate early
embryonic development

How to analyze single-cell transcriptomic datasets taking advantage of the most recent machine
learning methods
How to generate hypotheses from sequencing data and test them with orthogonal single-cell
approaches

There have been rapid developments in single-cell sequencing and imaging techniques over recent years.
Such approaches are particularly well suited to studying embryonic development during the earliest cell
specification events. The collection of single-cell data has to go hand-in-hand with using tailored
machine learning methods that drive the generation of hypotheses and the design of validation
experiments.

In this webinar, we will discuss how the combination of single-cell techniques, machine learning, and
developmental biology, is delivering new insights into the early events controlling embryonic
development in both mice and humans.

What will you learn?

Webinar

Follow the QR code to
access the webinar:

Speakers
Antonio Scialdone (Group Leader, Helmholtz Zentrum München, Germany; left)
studied at the University of Naples “Federico II” (Italy), where he received a PhD in
physics. He then worked as a postdoc at the John Innes Centre (Norwich, UK) in
the lab of Martin Howard, and at the EMBL-EBI (Cambridge, UK) in John Marioni's
lab. Antonio established his own independent lab in 2017 at the Helmholtz
Zentrum München. In his lab, he combines machine learning and physical
modeling to understand cellular fate decision starting from single-cell data.
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