Featured peer-reviewed article: A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data

Written by Mohammed Khurshed, Remco J Molenaar & Cornelis JF van Noorden

In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web-interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest.

 

 


Submit Your Research to the F1000Research Oncology Gateway

Share your oncology research with the global scientific community through the F1000Research Oncology Gateway. With trusted publishing, open access, and transparent peer review, your work will uphold the highest standards of research integrity while driving innovation in cancer treatment and understanding.

Join a trusted platform that accelerates progress in oncology. Submit your research today at F1000Research Oncology Gateway.